• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微流控芯片在尘肺研究中的应用前景

田畅 邵超杰 李梦雪 周琳 黄辉 朱锋仁 穆敏 叶冬青

田畅, 邵超杰, 李梦雪, 周琳, 黄辉, 朱锋仁, 穆敏, 叶冬青. 微流控芯片在尘肺研究中的应用前景[J]. 中华疾病控制杂志, 2024, 28(5): 591-595. doi: 10.16462/j.cnki.zhjbkz.2024.05.016
引用本文: 田畅, 邵超杰, 李梦雪, 周琳, 黄辉, 朱锋仁, 穆敏, 叶冬青. 微流控芯片在尘肺研究中的应用前景[J]. 中华疾病控制杂志, 2024, 28(5): 591-595. doi: 10.16462/j.cnki.zhjbkz.2024.05.016
TIAN Chang, SHAO Chaojie, LI Mengxue, ZHOU Lin, HUANG Hui, CHU Fengjen, MU Min, YE Dongqing. Application of microfluidic chips in the study of pneumoconiosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(5): 591-595. doi: 10.16462/j.cnki.zhjbkz.2024.05.016
Citation: TIAN Chang, SHAO Chaojie, LI Mengxue, ZHOU Lin, HUANG Hui, CHU Fengjen, MU Min, YE Dongqing. Application of microfluidic chips in the study of pneumoconiosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(5): 591-595. doi: 10.16462/j.cnki.zhjbkz.2024.05.016

微流控芯片在尘肺研究中的应用前景

doi: 10.16462/j.cnki.zhjbkz.2024.05.016
基金项目: 

安徽省自然科学基金 2108085QH358

安徽理工大学引进人才基金 13200387

安徽省高校自然科学研究项目 2022AH050829

安徽理工大学校级重点项目 xjzd2020-20

详细信息
    通讯作者:

    叶冬青,E-mail: ydqph@aust.edu.cn

    田畅,E-mail: tianchang984@163.com

  • 中图分类号: R135.2

Application of microfluidic chips in the study of pneumoconiosis

Funds: 

Anhui Provincial Natural Science Foundation 2108085QH358

Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology 13200387

Natural Science Research Project of Anhui Educational Committee 2022AH050829

University-level Key Projects of Anhui University of Science and Technology xjzd2020-20

More Information
  • 摘要: 尘肺病是一种严重危害人们身心健康的职业病,研究尘肺病的发病机制对尘肺的预防、诊断和治疗具有重要意义。然而,传统体内与体外研究方法存在诸多技术难题,无法重现体内三维肺组织与肺部物理和生物微环境,难以对其中的生理生化过程进行实时动态观察,制约着尘肺病理机制相关方面的研究。微流控芯片以其对细胞、粒子和溶液的时间与空间操控能力,为模拟肺部状态,重构其物理和生物微环境提供了新思路。本研究以粉尘粒子与肺的相互作用为出发点,综述了粉尘粒子在肺部的沉积特性及粉尘粒子对肺产生的生理生化变化,以及利用微流控芯片在粉尘粒子与尘肺相互作用方面的研究进展。
  • [1] Zheng WC, Xie RX, Liang XP, et al. Fabrication of biomaterials and biostructures based on microfluidic manipulation[J]. Small, 2022, 18(16): 2105867. DOI: 10.1002/smll.202105867.
    [2] Ayuso JM, Virumbrales-Muñoz M, Lang JM, et al. A role for microfluidic systems in precision medicine[J]. Nat Commun, 2022, 13: 3086. DOI: 10.1038/s41467-022-30384-7.
    [3] Zhao L, Gao MQ, Niu YB, et al. Flow-rate and particle-size insensitive inertial focusing in dimension-confined ultra-low aspect ratio spiral microchannel[J]. Sens Actuat B Chem, 2022, 369: 132284. DOI: 10.1016/j.snb.2022.132284.
    [4] Liu WM, Hu R, Han K, et al. Parallel and large-scale antitumor investigation using stable chemical gradient and heterotypic three-dimensional tumor coculture in a multi-layered microfluidic device[J]. Biotechnol J, 2021, 16(10): e2000655. DOI: 10.1002/biot.202000655.
    [5] Zhuang JJ, Xia LP, Zou ZY, et al. Recent advances in integrated microfluidics for liquid biopsies and future directions[J]. Biosens Bioelectron, 2022, 217: 114715. DOI: 10.1016/j.bios.2022.114715.
    [6] Xie Y, Li HM, Chen FM, et al. Clustered regularly interspaced short palindromic repeats-based microfluidic system in infectious diseases diagnosis: current status, challenges, and perspectives[J]. Adv Sci, 2022, 9(34): 2204172. DOI: 10.1002/advs.202204172.
    [7] Zhou G, Xu Z, Chen GS, et al. Hydrophobic/oleophobic nanofibrous filter media with bead-on-string structure for efficient personal protection of dust in mines[J]. Environ Res, 2023, 226: 115699. DOI: 10.1016/j.envres.2023.115699.
    [8] Mu M, Li B, Zou YJ, et al. Coal dust exposure triggers heterogeneity of transcriptional profiles in mouse pneumoconiosis and Vitamin D remedies[J]. Part Fibre Toxicol, 2022, 19(1): 7. DOI: 10.1186/s12989-022-00449-y.
    [9] Wang WY, Mu M, Zou YJ, et al. Glycogen metabolism reprogramming promotes inflammation in coal dust-exposed lung[J]. Ecotoxicol Environ Saf, 2022, 242: 113913. DOI: 10.1016/j.ecoenv.2022.113913.
    [10] Upaassana VT, Ghosh S, Chakraborty A, et al. Highly sensitive lab on a chip (loc) immunoassay for early diagnosis of respiratory disease caused by respirable crystalline silica (RCS)[J]. Anal Chem, 2019, 91(10): 6652-6660. DOI: 10.1021/acs.analchem.9b00582.
    [11] Wang DM, Liang RY, Yang M, et al. Incidence and disease burden of coal workers' pneumoconiosis worldwide, 1990-2019: evidence from the Global Burden of Disease Study 2019[J]. Eur Respir J, 2021, 58(5): 2101669. DOI: 10.1183/13993003.01669-2021.
    [12] 中华人民共和国国家卫生健康委员会. 国家卫生健康委员会2023年6月15日新闻发布会文字实录[EB/OL]. (2023-06-15)[2023-06-26]. http://www.nhc.gov.cn/xcs/s3574/202306/b5d0b329c886457ab250c79e21f8651b.shtml.
    [13] Honma K, Abraham JL, Chiyotani K, et al. Proposed criteria for mixed-dust pneumoconiosis: definition, descriptions, and guidelines for pathologic diagnosis and clinical correlation[J]. Hum Pathol, 2004, 35(12): 1515-1523. DOI: 10.1016/j.humpath.2004.09.008.
    [14] Shekarian Y, Rahimi E, Rezaee M, et al. Respirable coal mine dust: a review of respiratory deposition, regulations, and characterization[J]. Minerals, 2021, 11(7): 696. DOI: 10.3390/min11070696.
    [15] Patra AK, Gautam S, Kumar P. Emissions and human health impact of particulate matter from surface mining operation—a review[J]. Environ Technol Innov, 2016, 5: 233-249. DOI: 10.1016/j.eti.2016.04.002.
    [16] Tao HH, Zhao H, Ge DY, et al. Necroptosis in pulmonary macrophages promotes silica-induced inflammation and interstitial fibrosis in mice[J]. Toxicol Lett, 2022, 355: 150-159. DOI: 10.1016/j.toxlet.2021.11.015.
    [17] 侯润苏, 田燕歌, 李建生. 尘肺病动物和细胞模型研究进展[J]. 中华劳动卫生职业病杂志, 2022, 40(7): 547-552. DOI: 10.3760/cma.j.cn121094-20210425-00230.

    Hou RS, Tian YG, Li JS. Research progress on animal and cell models of pneumoconiosis[J]. Chin J Ind Hyg Occup Dis, 2022, 40(7): 547-552. DOI: 10.3760/cma.j.cn121094-20210425-00230.
    [18] Caballero-Gallardo K, Olivero-Verbel J. Mice housed on coal dust-contaminated sand: a model to evaluate the impacts of coal mining on health[J]. Toxicol Appl Pharmacol, 2016, 294: 11-20. DOI: 10.1016/j.taap.2016.01.009.
    [19] Carneiro PJ, Clevelario AL, Padilha GA, et al. Bosutinib therapy ameliorates lung inflammation and fibrosis in experimental silicosis[J]. Front Physiol, 2017, 8: 159. DOI: 10.3389/fphys.2017.00159.
    [20] Castellani S, Di Gioia S, di Toma L, et al. Human cellular models for the investigation of lung inflammation and mucus production in cystic fibrosis[J]. Anal Cell Pathol (Amst), 2018, 2018: 3839803. DOI: 10.1155/2018/3839803.
    [21] Yu F, Choudhury D. Microfluidic bioprinting for organ-on-a-chip models[J]. Drug Discov Today, 2019, 24(6): 1248-1257. DOI: 10.1016/j.drudis.2019.03.025.
    [22] Zhang F, Liu WM, Zhou SS, et al. Investigation of environmental pollutant-induced lung inflammation and injury in a 3d coculture-based microfluidic pulmonary alveolus system[J]. Anal Chem, 2020, 92(10): 7200-7208. DOI: 10.1021/acs.analchem.0c00759.
    [23] Humayun M, Chow CW, Young EWK. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions[J]. Lab Chip, 2018, 18(9): 1298-1309. DOI: 10.1039/c7lc01357d.
    [24] Zamprogno P, Wüthrich S, Achenbach S, et al. Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane[J]. Commun Biol, 2021, 4(1): 168. DOI: 10.1038/s42003-021-01695-0.
    [25] Yang XY, Li KY, Zhang X, et al. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing[J]. Lab Chip, 2018, 18(3): 486-495. DOI: 10.1039/c7lc01224a.
    [26] Berg EJ, Weisman JL, Oldham MJ, et al. Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV)[J]. J Biomech, 2010, 43(6): 1039-1047. DOI: 10.1016/j.jbiomech.2009.12.019.
    [27] Dong J, Qiu Y, Lv HM, et al. Investigation on microparticle transport and deposition mechanics in rhythmically expanding alveolar chip[J]. Micromachines, 2021, 12(2): 184. DOI: 10.3390/mi12020184.
    [28] Jabbar F, Kim YS, Lee SH. Biological influence of pulmonary disease conditions induced by particulate matter on microfluidic lung chips[J]. BioChip J, 2022, 16(3): 305-316. DOI: 10.1007/s13206-022-00068-x.
    [29] Zhang M, Xu C, Jiang L, et al. A 3D human lung-on-a-chip model for nanotoxicity testing[J]. Toxicol Res, 2018, 7(6): 1048-1060. DOI: 10.1039/c8tx00156a.
    [30] Huh D, Matthews BD, Mammoto A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986): 1662-1668. DOI: 10.1126/science.1188302.
    [31] Doryab A, Taskin MB, Stahlhut P, et al. A bioinspired in vitro lung model to study particokinetics of nano-/microparticles under cyclic stretch and air-liquid interface conditions[J]. Front Bioeng Biotech, 2021, 9: 616830. DOI: 10.3389/fbioe.2021.616830.
  • 加载中
计量
  • 文章访问数:  114
  • HTML全文浏览量:  20
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-11-29
  • 网络出版日期:  2024-06-05
  • 刊出日期:  2024-05-10

目录

    /

    返回文章
    返回