• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于基因组学数据的缺血性脑卒中免疫分子标志物的鉴定

张文婧 徐雅琪 黄一铭 王凤琳 王爱民 王清华 石福艳

张文婧, 徐雅琪, 黄一铭, 王凤琳, 王爱民, 王清华, 石福艳. 基于基因组学数据的缺血性脑卒中免疫分子标志物的鉴定[J]. 中华疾病控制杂志, 2024, 28(6): 664-671. doi: 10.16462/j.cnki.zhjbkz.2024.06.008
引用本文: 张文婧, 徐雅琪, 黄一铭, 王凤琳, 王爱民, 王清华, 石福艳. 基于基因组学数据的缺血性脑卒中免疫分子标志物的鉴定[J]. 中华疾病控制杂志, 2024, 28(6): 664-671. doi: 10.16462/j.cnki.zhjbkz.2024.06.008
ZHANG Wenjing, XU Yaqi, HUANG Yiming, WANG Fenglin, WANG Aimin, WANG Qinghua, SHI Fuyan. Identification of immune molecular markers for ischemic stroke based on genomic data[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(6): 664-671. doi: 10.16462/j.cnki.zhjbkz.2024.06.008
Citation: ZHANG Wenjing, XU Yaqi, HUANG Yiming, WANG Fenglin, WANG Aimin, WANG Qinghua, SHI Fuyan. Identification of immune molecular markers for ischemic stroke based on genomic data[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(6): 664-671. doi: 10.16462/j.cnki.zhjbkz.2024.06.008

基于基因组学数据的缺血性脑卒中免疫分子标志物的鉴定

doi: 10.16462/j.cnki.zhjbkz.2024.06.008
基金项目: 

国家自然科学基金 81803337

国家自然科学基金 81872719

国家自然科学基金 82003560

国家统计局课题 2018LY79

山东省自然科学基金 ZR2019MH034

山东省自然科学基金 ZR2020MH340

山东省自然科学基金 ZR2023MH313

详细信息
    通讯作者:

    石福艳,E-mail: shifuyan@126.com

    王清华,E-mail: wangqinghua@wfmc.edu.cn

  • 中图分类号: R743.3

Identification of immune molecular markers for ischemic stroke based on genomic data

Funds: 

National Natural Science Foundation of China 81803337

National Natural Science Foundation of China 81872719

National Natural Science Foundation of China 82003560

National Bureau of Statistics 2018LY79

Natural Science Foundation Project of Shandong Province ZR2019MH034

Natural Science Foundation Project of Shandong Province ZR2020MH340

Natural Science Foundation Project of Shandong Province ZR2023MH313

More Information
  • 摘要:   目的  基于基因组学数据,探索缺血性脑卒中免疫相关分子标志物,为缺血性脑卒中的预防和临床治疗提供理论依据。  方法  选取基因表达综合数据库(gene expression omnibus, GEO)中GSE16561和GSE58294两个数据,对缺血性脑卒中相关免疫分子标志物进行分析和探索。基于免疫学数据库和分析网站(the immunology database and analysis portal, ImmPort)数据库,获取免疫相关的基因,分析其在缺血性脑卒中组和正常对照组中的差异表达,鉴定差异表达免疫基因(differentially expressed immune genes, DEIGs),并利用蛋白质互作网络(protein-protein interaction, PPI)鉴定免疫相关的关键基因。基于DEIGs进行通路富集分析,发现缺血性脑卒中可能富集的分子信号通路。最后,基于CIBERSORT算法评估22种免疫细胞的浸润丰度,并计算其在缺血性脑卒中组和正常对照组中的差异,以此推断缺血性脑卒中相关的免疫细胞。  结果  差异分析结果表明37个DEIGs在两组间差异均有统计学意义(均P<0.05),包含缺血性脑卒中样本上调基因31个,下调基因6个。通路分析结果表明鉴定的DEIGs主要富集于免疫相关分子通路上。PPI的分析结果显示,TLR4、TLR2、MMP-9、CCR7、STAT3、TNFSF13BS100A12、CD19、CAMPSLC11A1是缺血性脑卒中密切相关的关键免疫基因。CIBERSORT结果表明,与正常对照样本相比较,缺血性脑卒中样本免疫回应细胞的富集水平较低(均P<0.05),而免疫抑制细胞的水平较高(均P < 0.05)。  结论  研究基于转录组表达数据鉴定了缺血性脑卒中相关的免疫基因、免疫信号通路和免疫细胞,从3个分子水平上揭示了与缺血性脑卒中相关的免疫分子标志物,对缺血性脑卒中的有效防控和治疗策略的制定具有重要意义。
  • 图  1  GSE16561和GSE58294数据集缺血性脑卒中和正常对照样本免疫基因差异表达分析结果的火山图

    蓝色表示缺血性脑卒中样本表达下调基因;红色表示表达上调基因;FC:对数转换的倍数值。

    Figure  1.  Volcano plots results of differential expression analysis of immune genes in ischemic stroke and normal control samples from GSE16561 and GSE58294 datasets

    Blue indicates down-regulated genes in ischemic stroke samples; Red indicates up-regulated genes; FC: fold change.

    图  2  GSE16561和GSE58294数据集缺血性脑卒中样本差异表达基因的韦恩图

    DEIGs:差异表达免疫基因。

    Figure  2.  Venn diagram of differentially expressed genes in ischemic stroke samples from GSE16561 and GSE58294 datasets

    DEIGs: differentially expressed immune genes.

    图  3  缺血性脑卒中相关DEIGs的通路富集分析结果

    DEIGs:差异表达免疫基因;A:KEGG富集分析结果;B:GO富集分析结果;KEGG:京都基因和基因组百科全书;GO:基因本体;红色表示免疫相关信号通路。

    Figure  3.  Results of pathway enrichment analysis of DEIGs associated with ischemic stroke

    DEIGs: differentially expressed immune genes; A: KEGG enrichment results; B: GO enrichment results; KEGG: Kyoto encyclopedia of genes and genomes; GO: gene ontology; Red indicates immune-related signaling pathways.

    图  4  缺血性脑卒中相关DEIGs的PPI图及关键免疫基因的鉴定

    DEIGs:差异表达免疫基因;PPI:蛋白质互作网络;颜色越深代表评分越高。

    Figure  4.  PPI map of DEIGs associated with ischemic stroke and identification of hub immune genes

    DEIGs: differentially expressed immune genes; PPI: protein-protein interaction networks; Darker colors represent higher scores.

    图  5  GSE16561和GSE58294数据集缺血性脑卒中组和正常对照组免疫细胞浸润分析结果

    红色表示缺血性脑卒中样本浸润水平降低的免疫细胞,绿色表示缺血性脑卒中样本浸润水平升高的免疫细胞;a: P<0.05, b: P<0.01。

    Figure  5.  Analysis results of immune cell infiltration in ischemic stroke group and normal controls group in GSE16561 and GSE58294 datasets

    Immune cells with reduced levels of infiltration in ischemic stroke samples are shown in red and those with increased levels in green. a: P < 0.05, b: P < 0.01.

  • [1] Collaborators G2S. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the global burden of disease study 2016 [J]. Lancet Neurol, 2019, 18(5): 439-458. DOI: 10.1016/S1474-4422(19)30034-1.
    [2] Harston GWJ, Rane N, Shaya G, et al. Imaging biomarkers in acute ischemic stroke trials: a systematic review [J]. AJNR Am J Neuroradiol, 2015, 36(5): 839-843. DOI: 10.3174/ajnr.A4208.
    [3] Zameer S, Siddiqui AS, Riaz R. Multimodality imaging in acute ischemic stroke [J]. Curr Med Imag Former Curr Med Imag Rev, 2021, 17(5): 567-577. DOI: 10.2174/1573405616666201130094948.
    [4] Shi KB, Zou M, Jia DM, et al. tPA mobilizes immune cells that exacerbate hemorrhagic transformation in stroke [J]. Circ Res, 2021, 128(1): 62-75. DOI: 10.1161/CIRCRESAHA.120.317596.
    [5] Iadecola C, Buckwalter MS, Anrather J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential [J]. J Clin Invest, 2020, 130(6): 2777-2788. DOI: 10.1172/JCI135530.
    [6] Xu SB, Lu JN, Shao AW, et al. Glial cells: role of the immune response in ischemic stroke [J]. Front Immunol, 2020, 11: 294. DOI: 10.3389/fimmu.2020.00294.
    [7] Nikolic D, Jankovic M, Petrovic B, et al. Genetic aspects of inflammation and immune response in stroke [J]. Int J Mol Sci, 2020, 21(19): 7409. DOI: 10.3390/ijms21197409.
    [8] Wu F, Liu ZC, Zhou LH, et al. Systemic immune responses after ischemic stroke: from the center to the periphery [J]. Front Immunol, 2022, 13: 911661. DOI: 10.3389/fimmu.2022.911661.
    [9] O'Connell GC, Petrone AB, Treadway MB, et al. Machine-learning approach identifies a pattern of gene expression in peripheral blood that can accurately detect ischemic stroke [J]. NPJ Genom Med, 2016, 1: 16038. DOI: 10.1038/npjgenmed.2016.38.
    [10] Yang XT, Wang PY, Yan SQ, et al. Study on potential differentially expressed genes in stroke by bioinformatics analysis [J]. Neurol Sci, 2022, 43(2): 1155-1166. DOI: 10.1007/s10072-021-05470-1.
    [11] Stamova B, Jickling GC, Ander BP, et al. Gene expression in peripheral immune cells following cardioembolic stroke is sexually dimorphic [J]. PLoS One, 2014, 9(7): e102550. DOI: 10.1371/journal.pone.0102550.
    [12] Bhattacharya S, Andorf S, Gomes L, et al. ImmPort: disseminating data to the public for the future of immunology [J]. Immunol Res, 2014, 58(2-3): 234-239. DOI: 10.1007/s12026-014-8516-1.
    [13] Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies [J]. Nucleic Acids Res, 2015, 43(7): e47. DOI: 10.1093/nar/gkv007.
    [14] Chen L, Zhang YH, Wang SP, et al. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways [J]. PLoS One, 2017, 12(9): e0184129. DOI: 10.1371/journal.pone.0184129.
    [15] Chin CH, Chen SH, Wu HH, et al. CytoHubba: identifying hub objects and sub-networks from complex interactome [J]. BMC Syst Biol, 2014, 8 (Suppl 4): S11. DOI: 10.1186/1752-0509-8-S4-S11.
    [16] Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles [J]. Nat Methods, 2015, 12(5): 453-457. DOI: 10.1038/nmeth.3337.
    [17] Lorne E, Dupont H, Abraham E. Toll-like receptors 2 and 4: initiators of non-septic inflammation in critical care medicine? [J]. Intensive Care Med, 2010, 36(11): 1826-1835. DOI: 10.1007/s00134-010-1983-5.
    [18] Lissauer ME, Johnson SB, Bochicchio GV, et al. Differential expression of toll-like receptor genes: sepsis compared with sterile inflammation 1 day before sepsis diagnosis [J]. Shock, 2009, 31(3): 238-244. DOI: 10.1097/SHK.0b013e3181834991.
    [19] Tajalli-Nezhad S, Karimian M, Beyer C, et al. The regulatory role of Toll-like receptors after ischemic stroke: neurosteroids as TLR modulators with the focus on TLR2/4 [J]. Cell Mol Life Sci, 2019, 76(3): 523-537. DOI: 10.1007/s00018-018-2953-2.
    [20] Zhong CK, Yang JY, Xu T, et al. Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke [J]. Neurology, 2017, 22;89(8): 805-812. DOI: 10.1212/WNL.0000000000004257.
    [21] McColl BW, Rothwell NJ, Allan SM. Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms [J]. J Neurosci, 2007, 27(16): 4403-4412. DOI: 10.1523/JNEUROSCI.5376-06.2007.
    [22] Kuol N, Stojanovska L, Nurgali K, et al. PD-1/PD-L1 in disease [J]. Immunotherapy, 2018, 10(2): 149-160. DOI: 10.2217/imt-2017-0120.
    [23] Gelderblom M, Weymar A, Bernreuther C, et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke [J]. Blood, 2012, 120(18): 3793-3802. DOI: 10.1182/blood-2012-02-412726.
    [24] Shichita T, Sugiyama Y, Ooboshi H, et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury [J]. Nat Med, 2009, 15(8): 946-950. DOI: 10.1038/nm.1999.
    [25] Cai W, Liu SX, Hu MY, et al. Functional dynamics of neutrophils after ischemic stroke [J]. Transl Stroke Res, 2020, 11(1): 108-121. DOI: 10.1007/s12975-019-00694-y.
    [26] Wu ZQ, Lei K, Li HZ, et al. Transcriptome-based network analysis related to M2-like tumor-associated macrophage infiltration identified VARS1 as a potential target for improving melanoma immunotherapy efficacy [J]. J Transl Med, 2022, 20(1): 489. DOI: 10.1186/s12967-022-03686-z.
  • 加载中
图(5)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  68
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-13
  • 修回日期:  2024-01-06
  • 网络出版日期:  2024-07-13
  • 刊出日期:  2024-06-10

目录

    /

    返回文章
    返回