• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反向传播神经网络构建煤工尘肺的患病风险预测模型——一项以医院为基础的病例对照研究

杨雨橦 田清华 安琪 郝建光 王剑茹 武姣 李怡淳 李杨 王庆尧 李宇星 雷立健 罗铭忠

杨雨橦, 田清华, 安琪, 郝建光, 王剑茹, 武姣, 李怡淳, 李杨, 王庆尧, 李宇星, 雷立健, 罗铭忠. 基于反向传播神经网络构建煤工尘肺的患病风险预测模型——一项以医院为基础的病例对照研究[J]. 中华疾病控制杂志, 2024, 28(8): 961-968. doi: 10.16462/j.cnki.zhjbkz.2024.08.015
引用本文: 杨雨橦, 田清华, 安琪, 郝建光, 王剑茹, 武姣, 李怡淳, 李杨, 王庆尧, 李宇星, 雷立健, 罗铭忠. 基于反向传播神经网络构建煤工尘肺的患病风险预测模型——一项以医院为基础的病例对照研究[J]. 中华疾病控制杂志, 2024, 28(8): 961-968. doi: 10.16462/j.cnki.zhjbkz.2024.08.015
YANG Yutong, TIAN Qinghua, AN Qi, HAO Jianguang, WANG Jianru, WU Jiao, LI Yichun, LI Yang, WANG Qingyao, LI Yuxing, LEI Lijian, LUO Mingzhong. A neural network risk prediction model of coal workers′ pneumoconiosis-a hospital-based case-control study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(8): 961-968. doi: 10.16462/j.cnki.zhjbkz.2024.08.015
Citation: YANG Yutong, TIAN Qinghua, AN Qi, HAO Jianguang, WANG Jianru, WU Jiao, LI Yichun, LI Yang, WANG Qingyao, LI Yuxing, LEI Lijian, LUO Mingzhong. A neural network risk prediction model of coal workers′ pneumoconiosis-a hospital-based case-control study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(8): 961-968. doi: 10.16462/j.cnki.zhjbkz.2024.08.015

基于反向传播神经网络构建煤工尘肺的患病风险预测模型——一项以医院为基础的病例对照研究

doi: 10.16462/j.cnki.zhjbkz.2024.08.015
基金项目: 

山西省“四个一批”科技兴医创新计划 2021XM43

煤炭环境致病与防制教育部重点实验室开放课 (MEKLCEPP/SXMU-202303)

详细信息
    通讯作者:

    罗铭忠,E-mail: lmz7344@163.com

    雷立健,E-mail: wwdlijian@sxmu.edu.cn

  • 中图分类号: R135.2

A neural network risk prediction model of coal workers′ pneumoconiosis-a hospital-based case-control study

Funds: 

The "Four Batch" of Technology-Driven Medical Innovation Plan in Shanxi Province, China 2021XM43

Open Project of MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, China (MEKLCEPP/SXMU-202303)

More Information
  • 摘要:   目的  旨在构建高性能煤工尘肺(coal workers′ pneumoconiosis, CWP)风险预测模型,促进CWP的早期预防。  方法  基于医院的病例对照研究,收集2017―2022年山西省某职业病医院的CWP患者和同期矿工非CWP患者病例资料,建立CWP数据库,采用随机森林筛选特征变量,基于反向传播(back propagation, BP)神经网络和logistic回归分析模型分别构建CWP预测模型,并利用受试者工作特征(receiver operating characteristic, ROC)曲线评价2个模型的CWP预测能力。  结果  BP神经网络模型灵敏度为88.6%,特异度为87.6%,准确率为87.12%;变量正态化重要性结果显示,影响煤矿工人发生CWP最重要的因素有1秒通气率(forceful expiratory volume in 1 second/ forceful vital capacity, FEV1/FVC)、工龄、工种。Logistic回归分析模型结果显示灵敏度80.7%,特异度84.1%,准确率82.7%。BP神经网络模型ROC曲线下面积(area under the curve, AUC)(AUC=0.918,95% CI:0.903~0.964)高于logistic回归分析模型(AUC=0.802,95% CI:0.750~0.850),BP神经网络模型的预测性能优于logistic回归分析模型。  结论  BP神经网络的预测性能高于logistic回归分析模型,将BP神经网络应用在CWP预测上有更高的准确性。FEV1/FVC、工龄、工种是影响煤矿工人发生CWP的重要因素。
  • 图  1  反向传播神经网络模型预测结果

    FEV1/FVC:1秒通气率;FVE1:1秒用力呼气量;FVC:用力肺活量;TC:总胆固醇;HDL-C:高密度脂蛋白胆固醇;TG:三酰甘油。

    Figure  1.  Prediction results of Back Propagation neural network model

    FEV1/FVC: forceful expiratory volume in 1 second./forceful vital capacity; FVE1: forced expiratory volume in 1 second; FVC: forced vital capacity; TC: total Cholesterol; HDL-C: high-density lipoprotein cholesterol; TG: triglyceride.

    图  2  Logistic回归预测模型的混淆矩阵

    Figure  2.  Confusion matrix of the logistic regression model

    图  3  2个模型预测效果的ROC曲线

    ROC: 受试者工作特征;BP:反向传播。

    Figure  3.  ROC curves of the predictive effects of the two models

    ROC: receiver operating characteristic; BP: back propagation.

    表  1  研究对象基本特征

    Table  1.   Basic information of input variables

    变量
    Variable
    病例组
    Case group
    (n=553)
    对照组
    Control group
    (n=430)
    χ2/Z值 value P值 value
    年龄组/岁 Age group/years 51.03±7.01 41.13±9.32 266.136 <0.001
      <45 76(13.74) 273(63.49)
      45~<60 437(79.03) 153(35.58)
      ≥60 40(7.23) 4(0.93)
    BMI/(kg·m-2) 52.864 <0.001
      偏瘦 Thin (<18.5) 9(1.63) 4(0.93)
      正常 Normal (18.5~<24.0) 229(41.41) 130(30.23)
      超重 Overweight (24.0~<28.0) 279(50.45) 202(46.98)
      肥胖 Fat (≥28.0) 36(6.51) 94(21.86)
    吸烟 Smoking 42.914 <0.001
      是 Yes 236(42.68) 274(63.72)
      否 No 317(57.32) 156(36.28)
    饮酒 Drinking 179.934 <0.001
      是 Yes 100(18.08) 256(59.53)
      否 No 453(81.92) 174(40.47)
    高血压 Hypertension 7.581 0.007
      是 Yes 154(27.85) 87(20.23)
      否 No 399(72.15) 343(79.77)
    血脂四项 Four aspects of blood lipids/(mmol·L-1)
      TC 4.63(4.12, 4.96) 4.63(4.09, 5.20) 1.113 0.266
      TG 1.77(1.28, 2.03) 1.53(1.02, 2.25) -2.658 0.086
      LDL-C 2.89(2.55, 3.16) 2.89(2.49, 3.28) 0.040 0.968
      HDL-C 1.28(1.12, 1.39) 1.19(1.04, 1.33) -4.274 <0.05
    肺功能检查 Pulmonary function test /%
      FVC 90.00(73.05, 106.20) 85.64(80.26, 94.30) -2.104 0.035
      FEV1 93.00(77.15, 112.00) 90.97(83.68, 98.70) -1.908 0.056
      FEV1/FVC 87.00(78.80, 89.98) 105.67(94.17, 111.82) 16.958 <0.001
    职业暴露情况 Occupational exposure situation
      工种 Type of work 68.472 <0.001
        掘进工 Heading man 96(17.36) 84(19.53)
        采煤工 Coal miner 187(33.81) 124(28.84)
        支护工 Support worker 70(12.66) 34(7.91)
        混合工 Mixed worker 152(27.49) 72(16.74)
        辅助工 Auxiliary worker 48(8.68) 116(26.98)
      工龄/年 Seniority/year 21.57±9.22 10.19±8.02 278.241 <0.001
        <10 70(12.66) 255(59.30)
        10~<20 178(32.19) 118(27.44)
        20~<30 173(31.28) 40(9.30)
        ≥30 132(23.87) 17(3.95)
    注:TC,总胆固醇;TG,三酰甘油;LDL-C,低密度脂蛋白胆固醇;HDL-C,高密度脂蛋白胆固醇;FVC,用力肺活量;FEV1,1秒钟用力呼气量; FEV1/FVC, 1秒通气率。
    ①以$\overline x \pm s$、M(P25, P75)或人数(占比/%)表示。
    Note: TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; FVC, forceful vital capacity; FEV1, forceful expiratory volume in 1 second; FEV1/FVC:forceful expiratory volume in 1 second/forceful vital capacity; FEV1/FVC, forceful expiratory volume in 1 second/forceful vital capacity.
    ① $\overline x \pm s$, M(P25, P75) or number of people (proportion/%).
    下载: 导出CSV

    表  2  前10位特征变量重要性

    Table  2.   Importance of top 10 characteristic variables

    排序 Sort 变量 Variable 重要性 Importance
    1 FEV1/FVC/% 0.257
    2 工龄/年 Seniority/year 0.189
    3 工种 Type of work 0.069
    4 年龄/岁 Age/years 0.066
    5 FEV1/% 0.065
    6 FVC/% 0.050
    7 TC/(mmol·L-1) 0.043
    8 HDL-C/(mmol·L-1) 0.043
    9 TG/(mmol·L-1) 0.043
    10 饮酒 Drinking 0.041
    注:FEV1/FVC, 1秒通气率;FEV1,1秒钟用力呼气量;FVC,用力肺活量;TC,总胆固醇;HDL-C,高密度脂蛋白胆固醇;TG,三酰甘油。
    Note: FEV1/FVC, forceful expiratory volume in 1 second/forceful vital capacity; FEV1, forceful expiratory volume in 1 second; FVC, forceful vital capacity; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides.
    下载: 导出CSV

    表  3  前10位特征变量重要性

    Table  3.   Importance of top 10 characteristic variables

    变量 Variable 系数
    Coefficient
    回归标准差
    ${s_{\overline x }}$
    标准化系数
    Standardized Coefficient
    P值 value 共线性统计
    容差 Tolerance VIF
      常量 Constant 1.421 0.152 0
      FVC/% 0.000 0.000 0.048 0.292 0.249 4.019
      FEV1/% -0.001 0.000 -0.100 0.029 0.250 4.003
      FEV1/FVC /% 0.010 0.001 0.303 <0.001 0.742 1.347
      饮酒 Drinking -0.188 0.027 -0.182 <0.001 0.789 1.267
      TC/(mmol·L-1) 0.024 0.013 0.045 0.060 0.900 1.111
      TG/(mmol·L-1) -0.014 0.010 -0.033 0.166 0.917 1.090
      HDL-C/(mmol·L-1) -0.072 0.045 -0.038 0.108 0.942 1.062
      辅助工 Auxiliary worker 0.023 0.008 0.065 0.005 0.961 1.040
      工龄/年 Seniority/year -0.013 0.001 -0.270 <0.001 0.606 1.651
      年龄/岁 Age/years -0.009 0.002 -0.171 <0.001 0.588 1.700
    注:FFVC,用力肺活量;FEV1,1秒钟用力呼气量;EV1/FVC:1秒通气率; TC,总胆固醇;TG,三酰甘油;HDL-C,高密度脂蛋白胆固醇; VIF,方差膨胀因子;FEV1/FVC:1秒通气率。
    Note: FVC, forceful vital capacity; FEV1, forceful expiratory volume in 1 second; FEV1/FVC:forceful expiratory volume in 1 second/forceful vital capacity; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; VIF, variance inflation factor; FEV1/FVC:forceful expiratory volume in 1 second./forceful vital capacity.
    下载: 导出CSV
  • [1] Castranova V, Vallyathan V. Silicosis and coal workers′ pneumoconiosis [J]. Environ Health Perspect, 2000, 108 Suppl 4(Suppl 4): 675-684. DOI: 10.1289/ehp.00108s4675.
    [2] Leung CC, Yu IT, Chen W. Silicosis [J]. Lancet, 2012, 379(9830): 2008-2018. DOI: 10.1016/s0140-6736(12)60235-9.
    [3] Weeks JL. The Mine Safety and Health Administration′s criterion threshold value policy increases miners′ risk of pneumoconiosis [J]. Am J Ind Med, 2006, 49(6): 492-498. DOI: 10.1002/ajim.20318.
    [4] Mukherjee AK, Bhattacharya SK, Saiyed HN. Assessment of respirable dust and its free silica contents in different Indian coalmines[J]. Ind Health, 2005, 43(2): 277-284. DOI: 10.2486/indhealth.43.277.
    [5] Xi ZL, Jiang MM, Yang JJ, et al. Experimental study on advantages of foam-Sol in coal dust control[J]. Process Saf Environ Prot, 2014, 92(6): 637-644. DOI: 10.1016/j.psep.2013.11.004.
    [6] Qi XM, Luo Y, Song MY, et al. Pneumoconiosis: current status and future prospects[J]. Chin Med J (Engl), 2021, 134(8): 898-907. DOI: 10.1097/cm9.0000000000001461.
    [7] Ge XY, Cui K, Ma HL, et al. Cost-effectiveness of comprehensive preventive measures for coal workers′ pneumoconiosis in China [J]. BMC Health Serv Res, 2022, 22(1): 266. DOI: 10.1186/s12913-022-07654-7.
    [8] Zhang L, Zhu L, Li ZH, et al. Analysis on the disease burden and its impact factors of coal worker′s pneumoconiosis inpatients [J]. J Peking Univ Health Sci, 2014, 46(2): 226-231.
    [9] Hao C, Jin N, Qiu C, et al. Balanced convolutional neural networks for pneumoconiosis detection[J]. Int J Environ Res Public Health, 2021, 18(17): 9091. DOI: 10.3390/ijerph18179091.
    [10] Moons KGM, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker [J]. Heart, 2012, 98(9): 683-690. DOI: 10.1136/heartjnl-2011-301246.
    [11] Zhang Y, Zhang Y, Liu B, et al. Prediction of the length of service at the onset of coal workers′ pneumoconiosis based on neural network [J]. Arch Environ Occup Health, 2020, 75(4): 242-250. DOI: 10.1080/19338244.2019.1644278.
    [12] Knight D, Ehrlich R, Cois A, et al. Predictors of silicosis and variation in prevalence across mines among employed gold miners in South Africa[J]. BMC Public Health, 2020, 20(1): 829. DOI: 10.1186/s12889-020-08876-2.
    [13] Han B, Liu H, Zhai G, et al. Estimates and predictions of coal workers′ pneumoconiosis cases among redeployed coal workers of the Fuxin mining industry group in China: a historical cohort study [J]. PLoS One, 2016, 11(2): e0148179. DOI: 10.1371/journal.pone.0148179.
    [14] Zhou D, Zhu D, Li N, et al. Exploration of three incidence trend prediction models based on the number of diagnosed pneumoconiosis cases in China from 2000 to 2019 [J]. J Occup Environ Med, 2021, 63(7): e440-e444. DOI: 10.1097/jom.0000000000002258.
    [15] 王嵘冰, 徐红艳, 李波, 等. BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展, 2018, 28(4): 31-35. DOI: 10.3969/j.issn.1673-629X.2018.04.007.

    Wang RB, Xu HY, Li B, et al. Research on method of determining hidden layer nodes in BP neural network[J]. Comput Technol Dev, 2018, 28(4): 31-35. DOI: 10.3969/j.issn.1673-629X.2018.04.007.
    [16] Li JM, Dong X, Ruan SM, et al. A parallel integrated learning technique of improved particle swarm optimization and BP neural network and its application [J]. Sci Rep, 2022, 12: 19325. DOI: 10.1038/s41598-022-21463-2.
    [17] Shao F, Huang Q, Wang C, et al. Artificial neural networking model for the prediction of early occlusion of bilateral plastic stent placement for inoperable hilar cholangiocarcinoma [J]. Surg Laparosc Endosc Percutan Tech, 2018, 28(2): e54-e58. DOI: 10.1097/sle.0000000000000502.
    [18] Liang Y, Li Q, Chen P, et al. Comparative study of back propagation artificial neural networks and logistic regression model in predicting poor prognosis after acute ischemic stroke [J]. Open Med (Wars), 2019, 14: 324-330. DOI: 10.1515/med-2019-0030.
    [19] Wu JH, Wang XH, Guo XL, et al. Forecasting incidence seniority of coal workers′ pneumoconiosis based on BP neural network[M]. Lecture Notes in Electrical Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 559-564. DOI: 10.1007/978-3-642-35440-3_73.
    [20] Zhang HY, Zou WM, Wu CR, et al. Influencing factors of pulmonary dysfunction in coal worker′s pneumoconiosis[J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2007, 25(1): 11-14.
    [21] Tong Y, Kong YY, Bian H, et al. Survival and disease burden trend analysis of occupational pneumoconiosis from 1963 to 2020 in Shizuishan City[J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2022, 40(5): 341-347. DOI: 10.3760/cma.j.cn121094-20210906-00439.
    [22] Han F, Chen YQ, Wu B, et al. Occupational health risk assessment of coal dust in coal industry chain[J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2018, 36(4): 291-294. DOI: 10.3760/cma.j.issn.1001-9391.2018.04.015.
    [23] Takigawa T, Kishimoto T, Nabe M, et al. The current state of workers′ pneumoconiosis in relationship to dusty working environments in Okayama Prefecture, Japan [J]. Acta Med Okayama, 2002, 56(6): 303-308. DOI: 10.18926/amo/31694.
    [24] Perret JL, Plush B, Lachapelle P, et al. Coal mine dust lung disease in the modern era[J]. Respirology, 2017, 22(4): 662-670. DOI: 10.1111/resp.13034.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-05-15
  • 网络出版日期:  2024-09-29
  • 刊出日期:  2024-08-10

目录

    /

    返回文章
    返回