• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳水化合物摄入量与糖尿病前期患病的关联分析

李婷 高倩 司鑫雨 王彤

李婷, 高倩, 司鑫雨, 王彤. 碳水化合物摄入量与糖尿病前期患病的关联分析[J]. 中华疾病控制杂志, 2025, 29(6): 706-712. doi: 10.16462/j.cnki.zhjbkz.2025.06.012
引用本文: 李婷, 高倩, 司鑫雨, 王彤. 碳水化合物摄入量与糖尿病前期患病的关联分析[J]. 中华疾病控制杂志, 2025, 29(6): 706-712. doi: 10.16462/j.cnki.zhjbkz.2025.06.012
LI Ting, GAO Qian, SI Xinyu, WANG Tong. Association between carbohydrate intake and prevalence of prediabetes[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(6): 706-712. doi: 10.16462/j.cnki.zhjbkz.2025.06.012
Citation: LI Ting, GAO Qian, SI Xinyu, WANG Tong. Association between carbohydrate intake and prevalence of prediabetes[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(6): 706-712. doi: 10.16462/j.cnki.zhjbkz.2025.06.012

碳水化合物摄入量与糖尿病前期患病的关联分析

doi: 10.16462/j.cnki.zhjbkz.2025.06.012
基金项目: 

国家自然科学基金 82073674

国家自然科学基金 82373692

国家自然科学基金 82204163

山西省基础研究计划资助项目 202203021212382

详细信息
    通讯作者:

    王彤,E-mail: tongwang@sxmu.edu.cn

  • 中图分类号: R181.3

Association between carbohydrate intake and prevalence of prediabetes

Funds: 

National Natural Science Foundation of China 82073674

National Natural Science Foundation of China 82373692

National Natural Science Foundation of China 82204163

Fundamental Research Program of Shanxi Province 202203021212382

More Information
  • 摘要:   目的  探讨每日碳水化合物摄入量与糖尿病前期患病的关系,为糖尿病前期形成提供证据。  方法  基于美国健康与营养调查2007―2016年数据,纳入与本研究相关且关键指标无缺失的14 299名研究对象。采用非参数协变量均衡广义倾向性评分方法均衡已测得的混杂因素,通过限制性立方样条探究二者关系。  结果  研究人群中位年龄为43岁,糖尿病前期患病率为39.28%。在调整混杂因素后,碳水化合物摄入量与糖尿病前期患病呈非线性关系(P非线性 < 0.001)。与每日摄入量为243.21 g相比,随着碳水化合物摄入量的增加,糖尿病前期的患病风险逐渐升高(OR值逐渐上升)。在高、中和低水平活动人群中,与每日碳水化合物摄入量分别为350.66 g、335.80 g、152.22 g相比,随着碳水化合物摄入量的增加,糖尿病前期的患病风险逐渐升高(OR值逐渐上升)。  结论  碳水化合物摄入量与糖尿病前期患病呈非线性关系,每日摄入超过约240 g的碳水化合物可能是糖尿病前期患病的危险因素。且身体活动水平下降,增加糖尿病前期患病风险的碳水化合物摄入量也会降低。
  • 图  1  NHANES数据集研究对象筛选流程图

    NHANES:美国健康与营养调查。

    Figure  1.  Flow chart of subject screening for NHANES dataset

    NHANES: National Health and Nutrition Examination Survey.

    图  2  在不同模型下碳水化合物摄入量与糖尿病前期之间的关系

    A:模型1,未调整混杂因素; B:模型2,调整了人口学特征; C:模型3,调整了人口学特征和生活方式; D:模型4,调整了人口学特征、生活方式和体检数据。

    Figure  2.  Association between carbohydrate intake and prediabetes under different models

    A: model 1, unadjusted confounders; B: model 2, adjusted demographic characteristics; C: model 3, adjusted demographic characteristics and lifestyle; D: model 4, adjusted demographic characteristics, lifestyle and physical examination data.

    图  3  不同模型的均衡性表现

    模型1:未调整混杂因素; 模型2:调整了人口学特征; 模型3:调整了人口学特征和生活方式; 模型4:调整了人口学特征、生活方式和体检数据。

    Figure  3.  Performance of the balance of the different models

    Model 1: unadjusted confounders; Model 2: adjusted demographic characteristics; Model 3: adjusted demographic characteristics and lifestyle; Model 4: adjusted demographic characteristics, lifestyle and physical examination data.

    图  4  均衡混杂因素方法的敏感性分析

    A和B分别表示使用npCBGPS和logistic方法调整了人口学特征、生活方式和体检数据。

    Figure  4.  Sensitivity analysis of the balanced confounders methods

    A and B represent adjustments for demographic characteristics, lifestyle, and physical examination data using npCBGPS and logistic methods, respectively.

    图  5  不同身体活动情况的敏感性分析

    A、B、C表示分别在低、中、高身体活动水平人群中使用npCBGPS调整了人口学特征、生活方式和体检数据。

    Figure  5.  Sensitivity analysis of different physical activity status

    A, B, C represent adjustments for demographic characteristics, lifestyle, and physical examination data using npCBGPS in populations with low, medium, and high levels of physical activity, respectively.

    表  1  研究对象基线特征

    Table  1.   Baseline characteristics of the subjects

    变量
    Variable
    非糖尿病前期
    Non-prediabetic state(n=8 682)
    糖尿病前期
    Prediabetic state
    (n=5 617)
    检验统计量
    Statistic of test
    P
    value
    年龄组/岁Age groups/years 1 349.90 < 0.001
      18~ < 45 5 690(65.5) 1 979(35.2)
      45~ < 60 1 708(19.7) 1 658(29.5)
      ≥60 1 284(14.8) 1 980(35.3)
    性别Gender 50.83 < 0.001
      男Male 4 228(48.7) 3 079(54.8)
      女Female 4 454(51.3) 2 538(45.2)
    婚姻状况Marital status 63.00 < 0.001
      离婚/丧偶/分居/未婚Divorced/widowed/separated/never married 3 887(44.8) 2 137(38.0)
      已婚/同居Married/live with partners 4 795(55.2) 3 480(62.0)
      受教育程度Education 80.18 < 0.001
      高中及以下High school or lower 3 429(39.5) 2 645(47.1)
      大学及以上University or higher 5 253(60.5) 2 972(52.9)
    种族Race 69.89 < 0.001
      墨西哥裔美国人Mexican American 1 206(13.9) 825(14.7)
      其他西班牙裔Other Hispanics 852(9.8) 567(10.1)
      非西班牙裔白人Non-Hispanic whites 4 168(48.0) 2 394(42.6)
      非西班牙裔黑人Non-Hispanic blacks 1 497(17.2) 1 251(22.3)
      其他种族(包括多种族) Other races (including multi-racial) 959(11.1) 580(10.3)
    家庭收入贫困比Ratio of family income to poverty 9.74 0.008
      低Low (< 1) 1 860(21.4) 1 116(19.9)
      中Medium (1~4) 4 335(49.9) 2 950(52.5)
      高High (>4) 2 487(28.7) 1 551(27.6)
    吸烟Smoking 78.18 < 0.001
      一生中吸烟 < 100支Lifetime smoking < 100 cigarettes 5 379(62.0) 3 061(54.5)
      一生中吸烟≥100支Lifetime smoking ≥100 cigarettes 3 303(38.0) 2 556(45.5)
    饮酒Drinking 152.41 < 0.001
      近1年未喝过酒Haven't drunk in the past year 1 130(13.0) 1 168(20.8)
      近1年喝过酒Have drunk in the past year 7 552(87.0) 4 449(79.2)
    蛋白质Protein /(g·d-1) 77.48(58.81, 101.25) 76.96(58.22, 100.36) 24 784 322 0.096
    脂肪Fat/(g·d-1) 73.11(52.76, 99.10) 72.81(52.76, 99.10) 24 542 764 0.509
    BMI/(kg·m-2) 25.68(22.63, 29.41) 27.96(24.64, 31.93) 18 612 707 < 0.001
    碳水化合物Carbohydrate/(g·d-1) 244.95(185.00, 315.56) 239.68(183.01, 311.12) 25 019 315 0.008
    身体活动Physical activity/(MET·h·w-1) 20.01 < 0.001
       < 1 17(0.2) 27(0.5)
      1~48 4 870(56.1) 3 299(58.7)
      >48 3 795(43.7) 2 291(40.8)
    注:①以中位数和四分位数间距M(P25, P75)对定量变量进行统计描述,以频数(构成比)对定性变量进行统计描述。
    Note: ① The median and interquartile range M(P25, P75) were used to describe the quantitative variables, and the frequency and constituent ratio n(%) were used to describe the qualitative variable.
    下载: 导出CSV
  • [1] 中华医学会内分泌学分会, 中华医学会糖尿病学分会, 中国医师协会内分泌代谢科医师分会. 中国成人糖尿病前期干预的专家共识(2023版)[J]. 中华糖尿病杂志, 2023, 15(6): 484-494. DOI: 10.3760/cma.j.cn115791-20230509-00188.

    Chinese Society of Endocrinology, Chinese Diabetes Society, Chinese College of Endocrinology and Metabolism Physicians. Chinese expert consensus on the intervention of prediabetes in Chinese adults (2023 edition)[J]. Chin J Diabetes, 2023, 15 (6): 484-494. DOI: 10.3760/cma.j.cn115791-20230509-00188.
    [2] Echouffo-Tcheugui JB, Selvin E. Prediabetes and what it means: the epidemiological evidence[J]. Annu Rev Public Health, 2021, 42: 59-77. DOI: 10.1146/annurev-publhealth-090419-102644.
    [3] Echouffo-Tcheugui JB, Perreault L, Ji LN, et al. Diagnosis and management of prediabetes: a review[J]. JAMA, 2023, 329(14): 1206-1216. DOI: 10.1001/jama.2023.4063.
    [4] Eid SA, Rumora AE, Beirowski B, et al. New perspectives in diabetic neuropathy[J]. Neuron, 2023, 111(17): 2623-2641. DOI: 10.1016/j.neuron.2023.05.003.
    [5] Schlesinger S, Neuenschwander M, Barbaresko J, et al. Prediabetes and risk of mortality, diabetes-related complications and comorbidities: umbrella review of Meta-analyses of prospective studies[J]. Diabetologia, 2022, 65(2): 275-285. DOI: 10.1007/s00125-021-05592-3.
    [6] Aune D, Schlesinger S, Mahamat-Saleh Y, et al. Diabetes mellitus, prediabetes and the risk of Parkinson's disease: a systematic review and Meta-analysis of 15 cohort studies with 29.9 million participants and 86 345 cases[J]. Eur J Epidemiol, 2023, 38(6): 591-604. DOI: 10.1007/s10654-023-00970-0.
    [7] Shen EJ, Chen X. Prediabetes and the risk of lung cancer incidence and mortality: a Meta-analysis[J]. J Diabetes Investig, 2023, 14(10): 1209-1220. DOI: 10.1111/jdi.14057.
    [8] van Sloten TT, Sedaghat S, Carnethon MR, et al. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression[J]. Lancet Diabetes Endocrinol, 2020, 8(4): 325-336. DOI: 10.1016/S2213-8587(19)30405-X.
    [9] Wang LM, Peng W, Zhao ZP, et al. Prevalence and treatment of diabetes in China, 2013-2018[J]. JAMA, 2021, 326(24): 2498-2506. DOI: 10.1001/jama.2021.22208.
    [10] Rooney MR, Fang M, Ogurtsova K, et al. Global prevalence of prediabetes[J]. Diabetes Care, 2023, 46(7): 1388-1394. DOI: 10.2337/dc22-2376.
    [11] 鲜圆圆, 高静, 柏丁兮, 等. 中国老年人糖尿病前期患病率的Meta分析[J]. 军事护理, 2022, 39(12): 62-65, 100. DOI: 10.3969/j.issn.2097-1826.2022.12.016.

    Xian YY, Gao J, Bai DX, et al. Prevalence of prediabetes mellitus among Chinese elderly: a Meta-analysis[J]. Mil Nurs, 2022, 39(12): 62-65, 100. DOI: 10.3969/j.issn.2097-1826.2022.12.016.
    [12] Gardner CD, Landry MJ, Perelman D, et al. Effect of a ketogenic diet versus Mediterranean diet on glycated hemoglobin in individuals with prediabetes and type 2 diabetes mellitus: the interventional Keto-Med randomized crossover trial[J]. Am J Clin Nutr, 2022, 116(3): 640-652. DOI: 10.1093/ajcn/nqac154.
    [13] Li L, Shan ZL, Wan ZZ, et al. Associations of lower-carbohydrate and lower-fat diets with mortality among people with prediabetes[J]. Am J Clin Nutr, 2022, 116(1): 206-215. DOI: 10.1093/ajcn/nqac058.
    [14] 田子星, 赵艾, 张健, 等. 城市女性膳食质量与糖尿病及糖尿病前期患病风险的关联研究[J]. 中华预防医学杂志, 2020, 54(7): 742-746. DOI: 10.3760/cma.j.cn112150-20190730-00609.

    Tian ZX, Zhao A, Zhang J, et al. Association between diet quality and the risk of diabetes and prediabetes in urban women[J]. Chinese preventive medical journal, 2020, (7): 742-746. DOI: 10.3760/cma.j.cn112150-20190730-00609.cma.J.c.n112150-20190730-00609.
    [15] 赵惠, 宋鹏坤, 何丽. 不同膳食模式对中老年人群糖尿病前期及糖尿病患病的影响[J]. 中国慢性病预防与控制, 2020, 28(3): 182-186. DOI: 10.16386/j.cjpccd.issn.1004-6194.2020.03.005.

    Zhao H, Song PK, He L. Influence of different dietary patterns on prevalence of prediabetes and diabetes among middle-aged and elderly people[J]. Chin J Prev Control Chronic Dis, 2020, 28(3): 182-186. DOI: 10.16386/j.cjpccd.issn.1004-6194.2020.03.005.
    [16] Zhang JL, Zhang AH. Relationships between serum Klotho concentrations and cognitive performance among older chronic kidney disease patients with albuminuria in NHANES 2011-2014[J]. Front Endocrinol (Lausanne), 2023, 14: 1215977. DOI: 10.3389/fendo.2023.1215977.
    [17] ElSayed NA, Aleppo G, Aroda VR, et al. 2. classification and diagnosis of diabetes: standards of care in diabetes-2023[J]. Diabetes Care, 2023, 46(Suppl 1): S19-S40. DOI: 10.2337/dc23-S002.
    [18] 樊萌语, 吕筠, 何平平. 国际体力活动问卷中体力活动水平的计算方法[J]. 中华流行病学杂志, 2014, 35(8): 961-964. DOI: 10.3760/cma.j.issn.0254-6450.2014.08.019.

    Fan MY, Lyu Y, He PP. Chinese guidelines for data processing and analysis concerning the international physical activity questionnaire[J]. Chin J Epidemiol, 2014, 35(8): 961-964. DOI: 10.3760/cma.j.issn.0254-6450.2014.08.019.
    [19] Pelgrims I, Devleesschauwer B, Vandevijvere S, et al. Using random-forest multiple imputation to address bias of self-reported anthropometric measures, hypertension and hypercholesterolemia in the Belgian health interview survey[J]. BMC Med Res Methodol, 2023, 23(1): 69. DOI: 10.1186/s12874-023-01892-x.
    [20] Fong C, Hazlett C, Imai K. Covariate balancing propensity score for a continuous treatment: application to the efficacy of political advertisements[J]. Ann Appl Stat, 2018, 12(1): 156-177. DOI: 10.1214/17-aoas1101.
    [21] Sack DE, Shepherd BE, Audet CM, et al. Inverse probability weights for quasicontinuous ordinal exposures with a binary outcome: method comparison and case study[J]. Am J Epidemiol, 2023, 192(7): 1192-1206. DOI: 10.1093/aje/kwad085.
    [22] Wu LD, Shi Y, Kong CH, et al. Dietary inflammatory index and its association with the prevalence of coronary heart disease among 45 306 US adults[J]. Nutrients, 2022, 14(21): 4553. DOI: 10.3390/nu14214553.
    [23] Alves R, Perelman J, Chang K, et al. Environmental impact of dietary patterns in 10 European countries; a cross-sectional analysis of nationally representative dietary surveys[J]. Eur J Public Health, 2024, 34(5): 992-1000. DOI: 10.1093/eurpub/ckae088.
    [24] Desbouys L, Méjean C, De Henauw S, et al. Socio-economic and cultural disparities in diet among adolescents and young adults: a systematic review[J]. Public Health Nutr, 2020, 23(5): 843-860. DOI: 10.1017/S1368980019002362.
    [25] Ness A. Diet, nutrition and the prevention of chronic diseases. WHO technical report series 916. report of a joint WHO/FSA expert consultation[J]. Int J Epidemiol, 2004, 33(4): 914-915. DOI: 10.1093/ije/dyh209.
    [26] Lee CL, Liu WJ, Wang JS. Associations of low-carbohydrate and low-fat intakes with all-cause mortality in subjects with prediabetes with and without insulin resistance[J]. Clin Nutr, 2021, 40(5): 3601-3607. DOI: 10.1016/j.clnu.2020.12.019.
    [27] 周美岑. 线粒体及其调控基因在糖脂异常发生机制中的作用[D]. 北京: 北京协和医学院, 2016.

    Zhou MC. The role of mitochondria and their regulatory genes in the pathogenesis of glucose and lipid abnormalities[D]. Beijing: Peking Union Medical College, 2016.
    [28] 江美玲. 2型糖尿病及其前期状态人群肠道菌群特征分析[D]. 广州: 南方医科大学, 2013.

    Jiang ML. Characteristics of intestinal flora in people with type 2 diabetes and prediabetes[D]. Guangzhou: Southern Medical University, 2013.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-09
  • 修回日期:  2025-02-20
  • 网络出版日期:  2025-07-07
  • 刊出日期:  2025-06-10

目录

    /

    返回文章
    返回