Screening and quantitative assessment of drought-sensitive intestinal infectious diseases in Changsha from 2016 to 2020
-
摘要:
目的 分析长沙市2016—2020年干旱事件发生情况及肠道传染病流行特点,多尺度评价干旱对肠道传染病的影响,为预防干旱期间肠道传染病的发生制定科学防控方案提供依据。 方法 收集长沙市2016—2020年肠道传染病发病人数资料和同期气象资料,采用Wilcoxon秩和检验比较肠道传染病日发病率变化,确定干旱相关敏感性肠道传染病;应用互相关函数初步分析肠道传染病发病相对于干旱事件的最佳滞后期;建立基于时间序列的分布滞后非线性模型,比较分析不同干旱程度对不同滞后期肠道传染病发病率的影响。 结果 非干旱日与干旱日的其他感染性腹泻的发病率有差异且差异有统计学意义(Z=-2.108, P=0.035),互相关函数分析显示干旱事件与其他感染性腹泻r在d 3达到最大值(r=0.261)。分布滞后非线性模型结果显示干旱期间其他感染性腹泻的单日发病风险在d 2最高(RR=1.034, 95% CI: 0.971~1.101),累积发病风险在d 14最高(RR=1.032, 95% CI: 0.995~1.070),0~14 d的累积RR为1.235(95% CI: 1.091~1.398),2D等高线图显示随着干旱等级的增加,发病风险和影响的持续时间也会增加。 结论 其他感染性腹泻是长沙市干旱敏感性肠道传染病,随着干旱等级的增加,其他感染性腹泻的发病风险增加,重旱影响的持续时间最长。 Abstract:Objective To analyze the occurrence of drought events and the epidemic characteristics of intestinal infectious diseases in Changsha from 2016 to 2020, and the impact of drought on intestinal infectious diseases was evaluated at a multiple scale, so as to provide a basis for formulating scientific prevention and control plans for the prevention of intestinal infectious diseases during drought. Methods The data of the incidence of enteric infectious diseases and meteorological data during the period from 2016 to 2020 in Changsha were collected. The Wilcoxon rank sum test was used to compare the changes in the daily incidence of intestinal infectious diseases, and to determine the sensitivity of drought related intestinal infectious diseases. The cross-correlation function was used to preliminarily analyze the optimal lag period of the incidence of intestinal infectious diseases. A distributed lag nonlinear model based on time series was established to compare and analyze the effects of different levels of drought on the incidence of intestinal infectious diseases at different lag days. es between non-drought days and drought days (Z=-2.108, P=0.035). Correlation analysis revealed that the correlation coefficients between drought events and OID reached their peak on the third day (r=0.261). The distributed lag non-linear model indicated that the daily risk of infectious diarrhea diseases (IDD) was highest on the second day (RR=1.034, 95% CI: 0.971-1.101), while the cumulative risk peaked on the 14th day (RR=1.032, 95% CI: 0.995-1.070), with a cumulative RR of 1.235 (95% CI: 1.091-1.398) from day 0 to day 14, respectively. The 2Dcontour plots demonstrated that the risk of onset and the duration of effects increased with higher drought severity. Conclusions Other infectious diarrhea is a drought sensitive intestinal infectious disease in Changsha. The risk of OID increased with the increase of drought severity, and the impact of severe drought last the longest. -
表 1 标准化降水指数干旱等级划分表
Table 1. Standardized precipitation index and drought grade classification table
等级Grade 类型Type SPI 1 无旱No drought >-0.5 2 轻旱Light drought >-1.0~-0.5 3 中旱Medium drought >-1.5~-1.0 4 重旱Heavy drought >-2.0~-1.5 5 特旱Severe drought ≤-2.0 注:SPI,标准化降水指数。
Note: SPI,standardized precipitation index.表 2 长沙市2016—2020年肠道传染病年发病情况
Table 2. Annual incidence of intestinal infectious diseases in Changsha, 2016-2020
年份
Year常住人口/万人
Permanent resident population /104 people伤寒和副伤寒发病数
Typhoid fever and paratyphoid number of cases伤寒和副伤寒发病率/10万-1
Incidence of typhoid and paratyphoi /100 000-12016 764.52 63 0.824 2017 791.81 56 0.707 2018 815.47 49 0.601 2019 839.45 39 0.465 2020 1 006.08 48 0.477 年份
Year细菌性痢疾发病数
Number of cases of bacillary dysentery disease细菌性痢疾发病率/10万-1
Prevalence of bacillary dysentery /100 000-1其他感染性腹泻病发病数
Number of episodes of other infectious diarrhoeal diseases其他感染性腹泻病发病/10万-1
Disease onset of other infectious diarrheal diseases /100 000-12016 335 4.381 5 954 77.879 2017 309 3.902 7 315 92.383 2018 354 4.341 8 418 103.229 2019 341 4.062 8 500 101.257 2020 250 2.485 5 851 58.156 表 3 长沙市2016—2020年干旱日与非干旱日肠道传染病发病率比较
Table 3. Comparison of the incidence of intestinal infectious diseases in drought days in Changsha, 2016—2020
肠道传染病Intestinal infectious diseases 发病率/10万-1 Morbidity rate /100 000-1 Z值
valueP值
value非干旱日Non-drought day 干旱日Drought day 伤寒/副伤寒Typhoid/ paratyphoid 0.017 0.015 -0.800 0.424 细菌性痢疾Bacillary dysentery 0.107 0.099 -1.349 0.117 其他感染性腹泻Other infectious diarrhea 2.310 2.508 -2.108 0.035 -
[1] Jørgensen CB. Role of urinary and cloacal bladders in chelonian water economy: historical and comparative perspectives[J]. Biol Rev Camb Philos Soc, 1998, 73(4): 347-366. DOI: 10.1017/s0006323198005210. [2] Moran P, Nhandara C, Hove I, et al. Contamination of traditional drinking water sources during a period of extreme drought in the Zvimba communal lands, Zimbabwe[J]. Cent Afr J Med, 1997, 43(11): 316-321. [3] Shehane SD, Harwood VJ, Whitlock JE, et al. The influence of rainfall on the incidence of microbial faecal indicators and the dominant sources of faecal pollution in a Florida river[J]. J Appl Microbiol, 2005, 98(5): 1127-1136. DOI: 10.1111/j.1365-2672.2005.02554.x. [4] Mao Y, Zhang N, Zhu B, et al. A descriptive analysis of the spatio-temporal distribution of intestinal infectious diseases in China[J]. BMC Infect Dis, 2019, 19(1): 766. DOI: 10.1186/s12879-019-4400-x. [5] 王文, 杨佳汇, 花甜甜, 等. 多源蒸散发数据融合及其在干旱监测中的应用[J]. 人民长江, 2020, 51(8): 19-26. DOI: 10.16232/j.cnki.1001-4179.2020.08.004.Wang W, Yang JH, Hua TT, et al. Fusion of multi-source evapotranspiration data and its application in drought monitoring[J]. Yangtze River, 2020, 51(8): 19-26. DOI: 10.16232/j.cnki.1001-4179.2020.08.004. [6] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气象干旱等级: GB/T 20481—2017[S]. 北京: 中国标准出版社, 2017: 14-15.General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Meteorological drought grade: GB/T 20481-2017[S]. Beijing: China Standards Press, 2017: 14-15. [7] Yusa AN, Berry P, Cheng JJ, et al. Climate change, drought and human health in Canada[J]. Int J Environ Res Public Health, 2015, 12(7): 8359-8412. DOI: 10.3390/ijerph120708359. [8] Wang H, Di B, Zhang TJ, et al. Association of meteorological factors with infectious diarrhea incidence in Guangzhou, southern China: a time-series study (2006-2017)[J]. Sci Total Environ, 2019, 672: 7-15. DOI: 10.1016/j.scitotenv.2019.03.330. [9] Feng BS, He SH, Zheng PY, et al. Mast cells play a crucial role in staphylococcus aureus peptidoglycan-induced diarrhea[J]. Am J Pathol, 2007, 171(2): 537-547. DOI: 10.2353/ajpath.2007.061274. [10] Wang HT, Liu ZD, Xiang JJ, et al. Effect of ambient temperatures on category C notifiable infectious diarrhea in China: an analysis of national surveillance data[J]. Sci Total Environ, 2021, 759: 143557. DOI: 10.1016/j.scitotenv.2020.143557. [11] 赵善露, 罗垲炜, 胡世雄, 等. 2005-2016年湖南省其他感染性腹泻流行特征分析[J]. 实用预防医学, 2019, 26(1): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYY201901013.htmZhao SL, Luo QW, Hu SX, et al. Analysis of epidemic characteristics of other infectious diarrhea in Hunan Province from 2005 to 2016[J]. Pract Prev Med, 2019, 26(1): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYY201901013.htm [12] 薛宝德, 吴翾, 李盛, 等. 2010—2019年兰州市气象因素与0~5岁儿童其他感染性腹泻发病的时间序列研究[J]. 兰州大学学报(医学版), 2022, 48(5): 30-37. DOI: 10.13885/j.issn.1000-2812.2022.05.006.Xue BD, Wu X, Li S, et al. A time series study on meteorological factors and incidence of other infectious diarrheas in children aged 0-5 years in Lanzhou from 2010 to 2019[J]. Journal of Lanzhou University (Medical Science), 2022, 48(5): 30-37. DOI: 10.13885/j.issn.1000-2812.2022.05.006.