• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2014–2019年48个国家/地区空气污染物质量指数与流行性感冒流行的关联

曹肖肖 祝文昊 徐磊 马鑫焱 黄鹏 喻荣彬

曹肖肖, 祝文昊, 徐磊, 马鑫焱, 黄鹏, 喻荣彬. 2014–2019年48个国家/地区空气污染物质量指数与流行性感冒流行的关联[J]. 中华疾病控制杂志, 2025, 29(9): 993-1005. doi: 10.16462/j.cnki.zhjbkz.2025.09.001
引用本文: 曹肖肖, 祝文昊, 徐磊, 马鑫焱, 黄鹏, 喻荣彬. 2014–2019年48个国家/地区空气污染物质量指数与流行性感冒流行的关联[J]. 中华疾病控制杂志, 2025, 29(9): 993-1005. doi: 10.16462/j.cnki.zhjbkz.2025.09.001
CAO Xiaoxiao, ZHU Wenhao, XU Lei, MA Xinyan, HUANG Peng, YU Rongbin. The association between air quality index of air pollutants and influenza pandemic risk in 48 countries/regions from 2014 to 2019[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(9): 993-1005. doi: 10.16462/j.cnki.zhjbkz.2025.09.001
Citation: CAO Xiaoxiao, ZHU Wenhao, XU Lei, MA Xinyan, HUANG Peng, YU Rongbin. The association between air quality index of air pollutants and influenza pandemic risk in 48 countries/regions from 2014 to 2019[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(9): 993-1005. doi: 10.16462/j.cnki.zhjbkz.2025.09.001

2014–2019年48个国家/地区空气污染物质量指数与流行性感冒流行的关联

doi: 10.16462/j.cnki.zhjbkz.2025.09.001
基金项目: 

国家自然科学基金 82173585

详细信息
    通讯作者:

    喻荣彬, E-mail: rongbinyu@njmu.edu.cn

  • 中图分类号: R181.1

The association between air quality index of air pollutants and influenza pandemic risk in 48 countries/regions from 2014 to 2019

Funds: 

National Natural Science Foundation of China 82173585

More Information
  • 摘要:   目的  采用两阶段时间序列分析方法评估2014–2019年48个国家/地区的周均空气污染物空气质量指数(air quality index, AQI)与周累计流行性感冒(简称流感)病例数的关联。  方法  纳入48个国家/地区的2014–2019年的空气污染物AQI数据和流感监测数据,在校正气温、降水量、季节性和国家/地区人口密度等潜在混杂因素的基础上,分析空气污染物AQI与流感病例的关联。在第1阶段建立每个国家/地区的关联模型,在第2阶段荟萃五大洲和气候带分区的合并风险。  结果  48个国家/地区周累计流感病例与气温、降水量和臭氧(zone, O3)的AQI呈反比,而与细颗粒物(fine particles, PM2.5)、可吸入颗粒物(inhalable particles, PM10)、二氧化硫、二氧化氮和一氧化碳的AQI波动趋势大体呈反比。亚组分层中,在滞后1周内,空气污染物AQI每增加10个单位,PM2.5与北美地区(RR=1.010 4, 95% CI: 1.004 7~1.016 1)和热带干旱带温带(ABC)地区(RR=1.027 9, 95% CI: 1.005 6~1.050 6)的流感传播风险升高有关;PM10与热带干旱带温带(ABC)地区的流感传播风险(RR=1.018 3, 95% CI: 1.003 7~1.033 1)升高有关;O3与亚洲(RR=0.957 5, 95% CI: 0.917 1~0.999 7)和欧洲(RR=0.887 0,95% CI: 0.854 1~0.921 2)的流感传播风险降低有关,并与热带(A)、热带干旱带温带3种组合(ABC)、温带(C)和寒带(D)地区的流感传播风险分别降低4.25%、7.79%、12.12%、7.88%有关。  结论  PM2.5、PM10的AQI与欧洲和亚洲及其气候带地区的流感传播风险上升有关,而O3的AQI为流感的保护因素。
  • 图  1  周均流行性感冒病例数与气象因素、空气污染物AQI的时序图

    PM2.5:细颗粒物;PM10:可吸入颗粒物;SO2:二氧化硫;NO2:二氧化氮;CO:一氧化碳;O3:臭氧; AQI,空气质量指数。

    Figure  1.  Time series plot of weekly mean influenza cases and meteorological factors, air pollutant AQIs

    PM2.5: fine particles; PM10: inhalable particles; SO2: sulfur dioxide; NO2: nitrogen dioxide; CO: carbon monoxide; O3: ozone; AQI: air quality index.

    图  2  3种模型拟合的空气污染物AQI与流行性感冒传播风险的暴露-反应曲线

    PM2.5:细颗粒物;PM10:可吸入颗粒物;SO2:二氧化硫;NO2:二氧化氮;CO:一氧化碳;O3:臭氧;AQI:空气质量指数;MA:移动平均模型;DLM:分布滞后线性模型;DLNM:分布滞后非线性模型。

    Figure  2.  Exposure-response curves of air pollutant AQI and influenza risk fitted by three models

    PM2.5: fine particles; PM10: inhalable particles; SO2: sulfur dioxide; NO2: nitrogen dioxide; CO: carbon monoxide; O3: ozone; AQI: air quality index; MA: moving average model; DLM: distributed lag linear model; DLNM: distributed lag nonlinear model.

    表  1  空气污染物的浓度与AQI的详细数量转化

    Table  1.   Detailed quantitative transformations of air pollutant concentrations to the AQI

    O3/ppm
    8 h
    PM2.5/(μg·m-3)
    24 h
    PM10/(μg·m-3)
    24 h
    CO/ppm
    8 h
    SO2/ppb
    1 h
    NO2/ppb
    1 h
    AQI范围
    AQI scope
    危害水平
    Hazard level
    0.000~0.054 0.0~12.0 0~54 0.0~4.4 0~35 0~53 0~50 良好Good
    0.055~0.070 12.1~35.4 55~154 4.5~9.4 36~75 54~100 51~100 轻度Mild
    0.071~0.085 35.5~55.4 155~254 9.5~12.4 76~185 101~360 101~150 对敏感人群不利Unhealthy for sensitive groups
    0.086~0.105 (55.5~150.4)3 255~354 12.5~15.4 (186~304)3 361~649 151~200 不健康Unhealthy
    0.106~0.200 (150.5~250.4)3 355~424 15.5~30.4 (305~604)4 650~1 249 201~300 非常不健康Very unhealthy
    (250.5~500.4)3 425~604 30.5~50.4 (605~1 004)4 1 250~2 049 301~500 严重危害Hazardous
    注:PM2.5, 细颗粒物; PM10, 可吸入颗粒物; SO2, 二氧化硫; NO2, 二氧化氮;CO, 一氧化碳; O3, 臭氧; AQI, 空气质量指数。
    Note: PM2.5, fine particles; PM10, inhalable particles; SO2, sulfur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone; AQI, air quality index.
    下载: 导出CSV

    表  2  2014–2019年48个国家/地区的流行性感冒病例数与气象因素、空气污染物的AQI基线情况

    Table  2.   Influenza cases and meteorological factors, air pollutant AQI baseline descriptors for 48 countries/regions, 2014-2019

    国家/地区
    Country/regions
    总病例数
    All cases
    流行性感冒病例
    Influenza cases
    气温
    Temperature/℃
    累计降水量
    Precipitation/mm
    合计Total 2 713 733 4(0, 24) 14.33±10.13 24.70±24.83
    亚洲Asia
        印度India 21 674 4(1, 16) 26.44±3.76 58.90±33.40
        以色列Israel 8 560 6(1, 33) 17.28±4.41 8.70±16.33
        日本Japan 53 293 18(3, 97) 15.06±7.61 36.00±23.77
        科威特Kuwait 12 139 12(3, 54) 27.33±9.38 9.90±13.09
        中国大陆Chinese mainland 398 979 304(68, 1 061) 11.77±9.56 40.80±16.42
        菲律宾Philippines 1 870 1(0, 5) 27.04±1.20 67.20±42.42
        韩国Korea 10 282 2(0, 23) 14.01±8.89 53.70±43.40
        新加坡Singapore 6 185 6(2, 13) 28.17±0.90 31.40±36.71
        泰国Thailand 5 921 9(1, 28) 28.03±1.76 60.70±27.18
        土耳其Türkiye 16 367 6(1, 16) 11.51±6.86 16.80±11.38
        越南Vietnam 3 227 4(1, 9) 25.63±3.32 37.80±32.79
    欧洲Europe
        奥地利Austria 17 367 4(0, 52) 2.20±4.52 18.70±14.81
        比利时Belgium 2 078 0(0, 1) 10.56±5.48 15.60±13.72
        保加利亚Bulgaria 1 631 0(0, 0) 13.35±8.10 11.90±13.34
        克罗地亚Croatia 12 337 3(0, 26) 9.54±5.26 21.90±19.91
        捷克Czech Republic 2 486 1(0, 10) 4.56±5.29 17.20±23.36
        丹麦Denmark 35 167 3(1, 21) 9.05±5.19 15.40±10.82
        芬兰Finland 1 034 0(0, 2) 4.17±8.58 12.20±8.63
        法国France 103 196 18(4, 276) 9.29±3.71 16.10±10.81
        德国Germany 8 365 0(0, 5) 10.87±6.93 14.00±9.74
        匈牙利Hungary 3 268 0(0, 7) 7.13±5.86 10.20±10.45
        意大利Italy 21 019 19(2, 101) 8.95±3.19 14.30±12.38
        立陶宛Lithuania 5 061 0(0, 4) 8.01±7.91 15.00±12.75
        卢森堡Luxembourg 1 601 0(0, 9) 6.28±4.60 14.20±14.64
        马耳他Malta 2 714 0(0, 3) 18.49±5.23 10.60±17.36
        荷兰Netherlands 18 618 2(0, 13) 11.07±5.63 15.90±13.41
        挪威Norway 115 289 21(3, 191) 4.93±6.09 25.10±15.06
        波兰Poland 9 648 0(0, 2) 9.59±7.60 11.70±9.29
        葡萄牙Portugal 17 105 1(0, 19) 16.49±3.45 22.90±16.73
        罗马尼亚Romania 6 786 0(0, 12) 9.60±8.06 11.80±11.04
        俄罗斯Russia 81 625 10(1, 83) 2.41±11.94 10.90±4.67
        塞尔维亚Serbia 3 690 0(0, 6) 11.38±7.97 12.50±13.37
        斯洛伐克Slovakia 1 975 0(0, 1) 10.58±8.16 14.40±11.86
        斯洛文尼亚Slovenia 16 716 1(0, 21) 6.31±6.94 27.10±26.48
        瑞典Sweden 63 365 7(2, 67) 6.29±7.31 12.40±8.08
        瑞士Switzerland 47 419 18(2, 157) 3.93±4.17 25.00±21.37
        英国Britain 136 093 27(4, 173) 9.95±4.08 18.90±11.16
    北美洲North America
        加拿大Canada 268 427 63(10, 324) 2.57±11.07 16.90±5.45
        萨尔瓦多El Salvador 1 061 0(0, 1) 27.43±1.02 44.20±24.55
        墨西哥Mexico 37 280 17(5, 45) 22.83±2.93 14.40±13.69
        美国America 1 031 862 315(133, 1 271) 8.84±7.49 21.10±7.40
    大洋洲Oceania
        澳大利亚Australia 42 557 15(5, 55) 19.21±4.13 12.80±8.08
    南美洲South America
        玻利维亚Bolivia 4 488 1(0, 7) 23.92±2.34 54.40±25.71
        巴西Brazil 21 890 15(7, 30) 25.04±1.61 48.90±21.41
        智利Chile 21 698 11(3, 35) 14.03±3.36 10.20±10.55
        哥伦比亚Colombia 4 912 4(1, 11) 25.33±0.65 35.10±16.51
        厄尔瓜多Ecuador 2 594 1(0, 4) 22.48±1.78 49.70±24.80
        秘鲁Peru 2 814 1(0, 5) 22.18±1.14 45.70±22.20
    合计Total 65.31±45.61 31.48±31.31 4.93±5.25 11.95±7.14 6.16±5.67 27.36±17.67
    亚洲Asia
        印度India 186.96±65.24 163.86±82.33 9.57±4.88 30.66±11.93 13.40±6.44 37.13±20.48
        以色列Israel 69.42±13.34 45.61±24.21 2.36±1.42 21.05±4.32 3.63±2.54 35.43±7.92
        日本Japan 49.75±9.50 16.84±4.33 3.74±0.73 9.46±2.49 3.03±0.76 33.78±8.70
        科威特Kuwait 117.91±25.66
        中国大陆Chinese mainland 116.64±25.53 66.75±18.26 11.79±6.04 16.62±4.49 14.19±12.09 42.21±13.61
        菲律宾Philippines 59.67±24.61 20.37±8.59 1.28±0.48 6.79±3.06 25.34±8.55
        韩国Korea 71.80±17.23 37.03±10.72 6.21±1.40 22.87±6.01 5.72±1.14 31.83±11.78
        新加坡Singapore 56.65±19.20 27.12±9.33 5.51±2.70 10.94±3.37 4.47±1.51 17.09±4.87
        泰国Thailand 85.15±24.53 43.78±13.62 3.21±2.49 10.64±4.73 7.82±2.51 20.92±11.15
        土耳其Türkiye 107.10±60.69 43.89±13.40 8.59±7.59 12.57±7.01 6.74±4.17 22.10±6.01
        越南Vietnam 74.65±30.80 24.96±23.68 16.13±11.31 13.91±5.15 14.81±7.98 44.57±28.89
    欧洲Europe
        奥地利Austria 57.87±21.79 21.30±8.89 2.30±0.91 12.72±2.81
        比利时Belgium 38.34±16.89 14.47±6.11 1.01±0.06 5.80±2.22 26.80±8.21
        保加利亚Bulgaria 79.58±33.47 28.11±15.78 7.37±1.60 11.01±5.38 25.01±10.11
        克罗地亚Croatia 62.80±20.25 19.66±6.50 4.17±1.58 8.16±3.06 24.17±8.63
        捷克Czech Republic 64.07±23.33 23.92±9.90 3.51±1.17 8.84±2.60 24.38±8.55
        丹麦Denmark 41.02±14.02 18.48±4.97 1.24±0.39 9.35±2.55 1.61±0.46 26.49±6.65
        芬兰Finland 24.38±7.82 10.25±3.91 1.63±1.06 5.87±1.63 25.65±5.54
        法国France 48.00±13.70 18.63±5.43 10.61±3.08 24.96±9.17
        德国Germany 49.31±18.33 17.79±8.97 7.33±6.37 8.50±4.70 1.68±0.72 27.70±11.58
        匈牙利Hungary 60.70±22.27 23.37±9.55 3.07±1.14 7.03±1.84 4.61±1.55 21.93±7.77
        意大利Italy 76.59±22.60 30.83±9.72 1.40±0.63 25.73±5.15 16.68±8.52
        立陶宛Lithuania 53.55±18.70 29.14±8.22 1.58±1.37 21.41±6.93
        卢森堡Luxembourg 44.40±14.51 18.22±4.92 1.15±0.36 10.26±2.08 2.27±0.61 21.52±8.40
        马耳他Malta 44.44±13.49 28.72±28.70 1.81±2.76 7.39±4.01 31.80±8.16
        荷兰Netherlands 46.68±17.29 20.02±6.19 1.12±0.29 13.30±4.03 2.08±0.68 24.60±9.86
        挪威Norway 30.26±9.81 16.59±7.27 1.68±3.82 12.33±4.90 24.36±6.08
        波兰Poland 70.94±27.20 30.09±13.58 3.13±1.88 13.79±3.54 4.78±2.05 27.81±10.83
        葡萄牙Portugal 35.60±26.02 17.78±5.31 5.40±4.80 3.79±1.60 29.62±5.26
        罗马尼亚Romania 100.88±60.42 22.52±11.45 2.78±0.76 12.34±5.53 26.96±9.11
        俄罗斯Russia 43.97±13.88 22.21±9.34 1.80±0.91 14.77±4.10 3.03±1.06 21.69±11.79
        塞尔维亚Serbia 73.28±36.33 28.89±15.83 8.86±4.25 9.63±3.21 8.15±5.14 27.06±9.29
        斯洛伐克Slovakia 60.00±22.18 25.01±12.54 2.78±1.92 11.19±3.99 3.92±2.24
        斯洛文尼亚Slovenia 27.56±12.55 2.21±1.51 10.00±3.50 24.61±10.69
        瑞典Sweden 28.27±14.42 17.41±7.72 12.13±3.69 24.16±6.22
        瑞士Switzerland 8.45±4.13 2.50±2.12 7.14±1.61 28.25±5.73
        英国Britain 41.56±14.63 17.23±5.21 4.43±4.31 11.53±3.42 23.95±6.05
    北美洲North America
        加拿大Canada 29.61±9.29 14.00±8.22 5.40±2.36 7.62±2.77 2.69±0.81 20.20±4.50
        萨尔瓦多El Salvador 79.19±24.37
        墨西哥Mexico 78.77±19.71 51.00±13.17 9.11±4.59 16.88±5.03 10.55±4.01 34.54±9.44
        美国America 171.45±89.81 27.14±19.14 1.43±2.55 10.50±3.84 3.22±1.13 91.33±38.26
    大洋洲Oceania
        澳大利亚Australia 29.53±9.20 15.49±4.44 2.75±2.81 4.97±5.39 3.20±3.66 14.37±7.33
    南美洲South America
        玻利维亚Bolivia 33.84±10.72 9.43±8.30 15.72±15.34
        巴西Brazil 53.22±13.45 35.43±11.18 5.34±2.23 15.64±3.98 4.31±2.23 25.36±8.20
        智利Chile 73.25±24.33 52.48±11.23 5.83±2.00 15.55±6.76 11.53±5.38 20.78±7.44
        哥伦比亚Colombia 58.69±18.57 32.97±9.64 1.41±0.90 7.26±2.67 6.35±2.39 8.03±3.26
        厄尔瓜多Ecuador 56.66±9.60 32.57±7.59 6.55±3.08 22.05±4.14 6.92±1.32 33.42±7.73
    南美洲South America
        秘鲁Peru 75.37±17.11 59.45±21.19 11.61±10.62 12.83±7.21 8.95±5.44 11.68±8.73
    注:PM2.5, 细颗粒物; PM10, 可吸入颗粒物; SO2, 二氧化硫; NO2, 二氧化氮;CO, 一氧化碳; O3, 臭氧; AQI, 空气质量指数;“–”表示数据无法获取。
    ①以M(P25, P75)表示;②以x±s表示。
    Note: PM2.5, fine particles; PM10, inhalable particles; SO2, sulfur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone; AQI, air quality index; "–" indicates that the data cannot be obtained.
    M(P25, P75); ② x±s.
    下载: 导出CSV

    表  3  五大洲空气污染物AQI每增加10个单位对48个国家/地区的流行性感冒传播风险的荟萃风险值和95% CI

    Table  3.   Regional pooled RR and 95% CIs for influenza risk for 48 countries/regions for each 10-unit increase in air pollutant AQI in five continents

    国家/地区
    Country/regions
    RR值value (95% CI)
    PM2.5 AQI PM10 AQI SO2 AQI
    亚洲Asia
        印度India 1.023 2(0.985 9~1.061 9) 1.002 6(0.966 4~1.040 2) 1.009 0(0.498 7~2.041 4)
        以色列Israel 0.993 4(0.944 6~1.044 7) 1.002 6(0.966 4~1.040 2) 1.226 3(0.496 1~3.031 3)
        日本Japan 1.091 2(1.024 2~1.162 6) 1.002 6(0.966 4~1.040 2) 14.626 4(4.384 1~48.796 9)
        科威特Kuwait 1.016 8(0.963 4~1.073 2)
        中国大陆Chinese mainland 0.968 1(0.930 9~1.006 8) 0.991 2(0.963 9~1.019 4) 1.219 0(0.627 1~2.369 5)
        菲律宾Philippines 0.997 5(0.961 6~1.034 6)
        韩国Republic of Korea 0.973 9(0.930 4~1.019 4) 0.985 5(0.952 3~1.019 8) 0.433 6(0.193 8~0.970 1)
        新加坡Singapore 0.989 7(0.944 6~1.036 8) 0.991 2(0.956 9~1.026 7) 0.994 4(0.488 7~2.023 4)
        泰国Thailand 0.994 2(0.959 7~1.029 8) 1.029 0(0.528 9~2.001 9)
        土耳其Türkiye 0.993 1(0.959 7~1.027 6) 0.985 6(0.507 6~1.913 5)
        越南Vietnam 1.010 2(0.968 2~1.054 0) 1.006 2(0.975 6~1.037 7) 0.932 3(0.490 6~1.771 9)
    合并Pooled 1.007 7(0.976 4~1.039 9) 0.996 5(0.978 3~1.015 1) 1.276 4(0.675 5~2.411 9)
    欧洲Europe
        奥地利Austria 0.985 6(0.950 8~1.021 7) 0.993 3(0.906 3~1.088 7) 0.851 0(0.492 2~1.471 5)
        比利时Belgium 1.002 9(0.970 5~1.036 4) 0.983 6(0.903 1~1.071 2)
        保加利亚Bulgaria 0.996 2(0.961 0~1.032 6) 0.976 6(0.902 6~1.056 6)
        克罗地亚Croatia 1.007 3(0.969 5~1.046 6) 0.991 0(0.897 1~1.094 8) 0.959 3(0.649 3~1.417 4)
        捷克Czech Republic 1.012 0(0.976 6~1.048 6) 1.010 2(0.926 7~1.101 2) 1.067 0(0.616 2~1.847 4)
        丹麦Denmark 1.013 4(0.981 1~1.046 8) 1.022 7(0.939 0~1.113 9)
        芬兰Finland 1.007 6(0.963 2~1.054 0) 0.981 4(0.877 8~1.097 3) 1.100 6(0.611 0~1.982 7)
        法国France 1.004 2(0.976 7~1.032 5) 1.002 4(0.937 4~1.071 9)
        德国Germany 1.040 1(0.958 6~1.128 5) 0.920 8(0.732 8~1.157 1)
        匈牙利Hungary 1.010 0(0.969 3~1.052 4) 1.022 0(0.918 2~1.137 6) 2.398 4(1.347 1~4.270 2)
        意大利Italy 1.001 6(0.970 3~1.033 9) 0.996 4(0.923 2~1.075 3) 0.987 9(0.608 2~1.604 6)
        立陶宛Lithuania 1.000 0(0.964 2~1.037 0) 0.976 2(0.893 3~1.066 9) 0.810 1(0.520 8~1.260 0)
        卢森堡Luxembourg 1.007 5(0.963 4~1.053 7) 1.013 4(0.905 8~1.133 8)
        马耳他Malta 1.026 9(0.983 5~1.072 3) 1.059 5(0.972 4~1.154 4)
        荷兰Netherlands 1.034 9(1.005 8~1.064 8) 1.068 3(0.993 0~1.149 2) 0.875 1(0.455 9~1.679 5)
        挪威Norway 1.015 5(0.986 5~1.045 3) 1.007 5(0.958 5~1.059 0)
        波兰Poland 0.961 5(0.932 1~0.991 8) 0.876 0(0.826 6~0.928 5) 0.688 1(0.477 2~0.992 0)
        葡萄牙Portugal 0.979 0(0.958 6~0.999 8) 1.000 4(0.937 1~1.067 9) 0.934 8(0.753 0~1.160 5)
        罗马尼亚Romania 1.011 7(0.917 5~1.115 5) 0.708 7(0.445 2~1.128 2)
        俄罗斯Russia 1.014 6(0.977 9~1.052 7) 0.999 4(0.928 3~1.076 0) 1.002 9(0.664 1~1.514 4)
        塞尔维亚Serbia 1.023 1(0.983 8~1.064 0) 1.009 6(0.923 2~1.104 0) 1.415 4(0.963 0~2.080 2)
        斯洛伐克Slovakia 1.015 6(0.976 7~1.056 1) 0.974 6(0.893 5~1.063 0) 1.051 9(0.731 7~1.512 2)
        斯洛文尼亚Slovenia 1.027 8(0.968 5~1.090 8) 0.853 4(0.601 5~1.210 8)
        瑞典Sweden 1.020 3(0.992 0~1.049 4) 1.102 2(1.030 1~1.179 2)
        瑞士Switzerland 1.014 6(0.910 6~1.130 5)
        英国Britain 0.999 1(0.973 5~1.025 5) 0.961 5(0.897 9~1.029 7) 1.012 0(0.810 9~1.263 0)
    合并Pooled 1.006 2(0.992 2~1.020 3) 1.003 9(0.973 4~1.035 4) 0.991 9(0.806 8~1.219 6)
    北美洲North America
        加拿大Canada 1.003 2(0.997 9~1.008 6) 1.007 5(0.983 8~1.031 7) 1.084 1(0.909 9~1.291 6)
        萨尔瓦多El Salvador 1.003 2(0.997 9~1.008 6)
        墨西哥Mexico 1.003 2(0.997 9~1.008 6) 0.981 3(0.957 8~1.005 4) 0.901 0(0.750 9~1.081 2)
        美国America 1.003 2(0.997 9~1.008 6) 1.002 1(0.981 6~1.022 9)
    合并Pooled 1.003 2(0.997 9~1.008 6) 0.996 9(0.977 2~1.017 0) 0.988 3(0.840 7~1.161 9)
    大洋洲Oceania
        澳大利亚Australia 0.993 1(0.936 4~1.053 2) 1.013 9(0.903 8~1.137 4) 1.013 7(0.877 2~1.171 6)
    南美洲South America
        玻利维亚Bolivia 0.935 7(0.874 9~1.000 7)
        巴西Brazil 0.965 9(0.929 9~1.003 2) 0.951 7(0.899 8~1.006 5) 0.977 2(0.706 1~1.352 4)
        智利Chile 0.950 5(0.915 6~0.986 7) 0.987 9(0.934 9~1.043 9) 0.766 4(0.573 0~1.024 9)
        哥伦比亚Colombia 1.023 1(0.977 5~1.070 9) 1.022 7(0.952 4~1.098 2) 0.453 2(0.267 9~0.766 9)
        厄尔瓜多Ecuador 0.966 0(0.927 4~1.006 3) 1.103 3(0.749 8~1.623 4)
        秘鲁Peru 0.958 0(0.920 1~0.997 6) 0.953 6(0.897 8~1.012 8) 1.053 2(0.785 9~1.411 5)
    合并Pooled 0.960 1(0.930 0~0.991 1) 0.957 0(0.913 5~1.002 6) 0.965 8(0.765 3~1.219 0)
    国家/地区
    Country/regions
    RR值value (95% CI)
    NO2 AQI CO AQI O3 AQI
    亚洲Asia
        印度India 0.994 8(0.745 0~1.328 4) 1.094 2(0.418 5~2.860 9) 0.966 5(0.905 5~1.031 6)
        以色列Israel 1.244 7(0.865 6~1.789 9) 0.836 3(0.309 3~2.261 3) 0.959 4(0.881 0~1.044 8)
        日本Japan 3.678 3(2.461 3~5.497 1) 23.821 5(5.561 4~102.035 5) 0.965 2(0.885 9~1.051 7)
        科威特Kuwait
        中国大陆Chinese mainland 1.027 4(0.769 5~1.371 6) 0.869 8(0.337 1~2.244 2) 0.912 4(0.854 5~0.974 1)
        菲律宾Philippines 0.986 5(0.632 6~1.538 2) 0.933 2(0.856 9~1.016 3)
        韩国Republic of Korea 0.788 4(0.579 0~1.073 7) 0.422 8(0.127 3~1.404 0) 0.948 7(0.872 3~1.031 9)
        新加坡Singapore 1.157 9(0.840 7~1.594 8) 0.973 6(0.340 2~2.786 8) 0.952 1(0.880 4~1.029 7)
        泰国Thailand 0.987 4(0.648 3~1.503 8) 0.964 6(0.885 3~1.051 0)
        土耳其Türkiye 1.299 2(0.934 2~1.806 7) 1.076 7(0.416 3~2.784 4) 0.966 8(0.886 5~1.054 4)
        越南Vietnam 1.062 8(0.783 6~1.441 3) 1.009 4(0.960 4~1.060 9)
    合并Pooled 1.191 1(0.910 9~1.557 4) 1.355 4(0.527 5~3.482 8) 0.957 5(0.917 1~0.999 7)
    欧洲Europe
        奥地利Austria 1.064 9(0.918 0~1.235 4)
        比利时Belgium 0.987 8(0.848 0~1.150 8) 0.894 9(0.826 5~0.968 8)
        保加利亚Bulgaria 0.925 6(0.814 5~1.051 9) 0.865 0(0.797 1~0.938 6)
        克罗地亚Croatia 0.955 8(0.814 5~1.121 6) 0.881 2(0.811 6~0.956 6)
        捷克Czech Republic 1.025 2(0.872 2~1.205 1) 0.877 3(0.807 9~0.952 7)
        丹麦Denmark 1.051 7(0.911 8~1.212 9) 1.811 2(0.841 3~3.898 9) 0.882 9(0.817 4~0.953 7)
        芬兰Finland 1.047 0(0.877 7~1.249 1) 0.888 3(0.818 1~0.964 6)
        法国France 1.059 0(0.940 6~1.192 3) 0.899 1(0.837 2~0.965 5)
        德国Germany 1.053 6(0.929 5~1.194 4) 0.881 3(0.814 3~0.953 7)
        匈牙利Hungary 0.952 2(0.797 9~1.136 5) 1.095 8(0.436 4~2.751 5) 0.894 4(0.823 2~0.971 8)
        意大利Italy 1.007 3(0.893 5~1.135 6) 0.883 0(0.817 7~0.953 6)
        立陶宛Lithuania 0.891 8(0.825 1~0.963 9)
        卢森堡Luxembourg 0.872 6(0.803 9~0.947 1)
        马耳他Malta 0.929 6(0.790 1~1.093 7) 0.863 1(0.795 2~0.936 7)
        荷兰Netherlands 1.033 0(0.923 9~1.155 0) 1.442 5(0.686 6~3.030 6) 0.898 3(0.833 6~0.968 1)
        挪威Norway 1.060 7(0.967 2~1.163 4) 0.881 0(0.826 3~0.939 2)
        波兰Poland 0.997 3(0.863 0~1.152 5) 0.755 8(0.411 2~1.389 1) 0.913 1(0.842 4~0.989 7)
        葡萄牙Portugal 1.049 4(0.912 1~1.207 5) 0.873 5(0.808 2~0.944 0)
        罗马尼亚Romania 1.043 8(0.900 1~1.210 5) 0.890 0(0.822 2~0.963 5)
        俄罗斯Russia 1.074 3(0.947 8~1.217 7) 1.751 5(0.908 8~3.375 7) 0.904 1(0.841 0~0.971 8)
        塞尔维亚Serbia 1.187 8(1.013 8~1.391 7) 1.361 7(0.795 6~2.330 4) 0.905 7(0.834 3~0.983 2)
        斯洛伐克Slovakia 0.991 0(0.838 2~1.171 6) 2.385 5(1.028 9~5.530 5)
        斯洛文尼亚Slovenia 1.032 8(0.909 5~1.172 9) 0.892 0(0.827 3~0.961 8)
        瑞典Sweden 1.028 0(0.909 7~1.161 5) 0.860 3(0.799 3~0.925 9)
        瑞士Switzerland 0.887 0(0.753 2~1.044 7) 0.898 2(0.827 5~0.975 1)
        英国Britain 1.008 1(0.902 6~1.125 9) 0.899 5(0.837 6~0.965 9)
    合并Pooled 1.017 1(0.957 5~1.080 4) 1.431 4(0.910 2~2.251 1) 0.887 0(0.854 1~0.921 2)
    北美洲North America
        加拿大Canada 1.073 4(0.964 3~1.194 8) 1.658 8(0.996 9~2.760 1) 1.029 8(0.969 2~1.094 2)
        萨尔瓦多El Salvador
        墨西哥Mexico 1.037 4(0.935 6~1.150 3) 0.954 7(0.593 2~1.536 7) 1.029 8(0.969 2~1.094 2)
        美国America
    合并Pooled 1.055 2(0.958 7~1.161 5) 1.258 5(0.802 8~1.972 6) 1.029 8(0.969 2~1.094 2)
    大洋洲Oceania
        澳大利亚Australia 0.972 8(0.898 1~1.053 7) 0.976 1(0.908 8~1.048 4) 1.013 1(0.955 5~1.074 2)
    南美洲South America
        玻利维亚Bolivia 0.940 5(0.851 9~1.038 4) 1.035 7(0.945 4~1.134 6)
        巴西Brazil 0.966 6(0.876 9~1.065 4) 0.954 6(0.847 5~1.075 3) 0.982 7(0.892 7~1.081 8)
        智利Chile 0.978 7(0.888 5~1.078 0) 0.954 6(0.847 5~1.075 3) 1.015 4(0.914 7~1.127 3)
        哥伦比亚Colombia 1.238 7(0.972 1~1.578 4) 1.048 0(0.818 7~1.341 5) 0.980 7(0.812 4~1.183 9)
        厄尔瓜多Ecuador 0.954 6(0.847 5~1.075 3) 1.064 7(0.954 2~1.187 9)
        秘鲁Peru 0.970 3(0.878 6~1.071 5) 0.954 6(0.847 5~1.075 3) 1.072 8(0.957 2~1.202 4)
    合并Pooled 0.963 9(0.876 2~1.060 4) 0.954 6(0.847 5~1.075 3) 1.033 7(0.961 5~1.111 4)
    注:PM2.5, 细颗粒物; PM10, 可吸入颗粒物; SO2, 二氧化硫; NO2, 二氧化氮;CO, 一氧化碳; O3, 臭氧; AQI,空气质量指数; “–”表示数据无法获取。
    P<0.05。
    Note: PM2.5, fine particles; PM10, inhalable particles; SO2, sulfur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone; AQI, air quality index; "–" indicates that the data cannot be obtained.
    P<0.05.
    下载: 导出CSV

    表  4  48个国家/地区的柯本气候带的划分

    Table  4.   Details of climatic breakdown of influenza transmission patterns for 48 countries/regions

    区域Zone 国家/地区Country/regions
    A (6) 巴西、哥伦比亚、萨尔瓦多、菲律宾、新加坡、泰国Brazil, Colombia, El Salvador, Philippines, Singapore, Thailand
    AB (1) 玻利维亚Bolivia
    ABC (3) 厄瓜多尔、印度、秘鲁Ecuador, India, Peru
    AC (1) 越南Vietnam
    B (3) 澳大利亚、科威特、墨西哥Australia, Kuwait, Mexico
    BC (1) 以色列Israel
    BCD (4) 智利、中国大陆、土耳其、美国Chile, Chinses mainland, Türkiye, America
    C (10) 比利时、丹麦、法国、德国、意大利、卢森堡、马耳他、荷兰、葡萄牙、英国Belgium, Denmark, France, Germany, Italy, Luxembourg, Malta, Netherlands, Portugal, Britain
    CD (7) 保加利亚、克罗地亚、匈牙利、日本、塞尔维亚、斯洛文尼亚、瑞士Bulgaria, Croatia, Hungary, Japan, Serbia, Slovenia, Switzerland
    D (12) 奥地利、加拿大、捷克、芬兰、立陶宛、挪威、波兰、韩国、罗马尼亚、俄罗斯、斯洛伐克、瑞典
    Austria, Canada, Czech Republic, Finland, Lithuania, Norway, Poland, Republic of Korea, Romania, Russia, Slovakia, Sweden
    注:A,热带;B,干旱带;C,温带;D,寒带。
    Note: A, tropical; B, arid zone; C, temperate zone; D, cold zone.
    下载: 导出CSV

    表  5  空气污染物AQI每增加10个单位对48个国家/地区的流行性感冒传播风险的气候带分区的荟萃风险值和95% CI

    Table  5.   Regional pooled RR and 95% CIs for influenza risk for 48 countries/regions for each 10-unit increase in air pollutant AQI in climate zones

    国家/地区
    Country/regions
    RR值value (95% CI)
    PM2.5 AQI PM10 AQI SO2 AQI
    A
        巴西Brazil 0.989 5(0.960 7~1.019 1) 0.970 6(0.930 1~1.012 9) 0.947 6(0.821 7~1.092 7)
        哥伦比亚Colombia 0.996 3(0.967 3~1.026 3) 0.982 9(0.941 6~1.026 0) 0.947 6(0.821 7~1.092 7)
        萨尔瓦多El Salvador 0.988 8(0.959 4~1.019 1)
        菲律宾Philippines 0.977 9(0.936 0~1.021 6)
        新加坡Singapore 0.989 0(0.960 0~1.018 8) 0.975 1(0.933 7~1.018 2) 0.947 6(0.821 7~1.092 7)
        泰国Thailand 0.976 1(0.934 7~1.019 3) 0.947 6(0.821 7~1.092 7)
    合并Pooled 0.990 9(0.965 5~1.016 9) 0.976 5(0.941 1~1.013 3) 0.947 6(0.821 7~1.092 7)
    AB
        玻利维亚Bolivia 0.860 5(0.718 3~1.030 8)
    ABC
        厄尔瓜多Ecuador 1.034 1(1.010 3~1.058 5) 1.149 9(0.952 8~1.387 8)
        印度India 1.027 1(1.004 7~1.049 9) 1.018 3(1.003 7~1.033 1) 1.049 7(0.874 5~1.260 0)
        秘鲁Peru 1.022 5(0.999 0~1.046 5) 1.018 3(1.003 7~1.033 1) 1.118 2(0.933 6~1.339 4)
    合并Pooled 1.027 9(1.005 6~1.050 6) 1.018 3(1.003 7~1.033 1) 1.105 2(0.926 7~1.317 9)
    AC
        越南Vietnam 1.002 5(0.970 6~1.035 5) 1.020 8(0.981 6~1.061 7) 0.927 5(0.850 5~1.011 4)
    B
        澳大利亚Australia 1.001 8(0.977 0~1.027 2) 0.983 7(0.945 5~1.023 4) 0.998 7(0.873 7~1.141 5)
        科威特Kuwait 1.00 18(0.977 0~1.027 2)
        墨西哥Mexico 1.001 8(0.977 0~1.027 2) 0.983 7(0.945 5~1.023 4) 0.901 6(0.788 8~1.030 5)
    合并Pooled 1.001 8(0.977 0~1.027 2) 0.983 7(0.945 5~1.023 4) 0.948 9(0.841 5~1.069 9)
    BC
        以色列Israel 0.988 8(0.937 3~1.043 2) 0.978 8(0.948 0~1.010 6) 1.095 1(0.526 8~2.276 5)
    BCD
        智利Chile 0.948 0(0.904 5~0.993 7) 0.997 2(0.985 0~1.009 5) 0.749 9(0.545 7~1.030 5)
        中国大陆Chinese mainland 0.964 7(0.924 8~1.006 3) 0.997 2(0.985 0~1.009 5) 1.228 3(0.907 6~1.662 4)
        土耳其Türkiye 0.997 2(0.985 0~1.009 5) 0.938 9(0.700 7~1.257 9)
        美国America 1.010 6(0.974 6~1.048 0) 0.997 2(0.985 0~1.009 5)
    合并Pooled 0.974 1(0.939 7~1.009 7) 0.997 2(0.985 0~1.009 5) 0.952 7(0.728 7~1.245 7)
    C
        比利时Belgium 1.005 0(0.972 3~1.038 7) 0.999 3(0.929 8~1.074 0)
        丹麦Denmark 1.014 3(0.981 9~1.078 0) 1.012 9(0.945 0~1.085 7)
        法国France 1.004 8(0.976 0~1.034 5) 1.024 2(0.965 0~1.087 0)
        德国Germany 1.065 1(0.997 4~1.137 3) 0.966 3(0.878 1~1.063 4)
        意大利Italy 1.003 6(0.971 9~1.036 4) 1.006 0(0.944 5~1.071 6) 0.965 4(0.873 3~1.067 3)
        卢森堡Luxembourg 1.009 1(0.96 82~1.051 6) 1.035 6(0.952 9~1.125 5)
        马耳他Malta 1.024 3(0.983 8~1.066 4) 1.056 4(0.987 4~1.130 1)
        荷兰Netherlands 1.033 6(1.003 4~1.064 7) 1.047 0(0.982 2~1.116 0) 0.964 4(0.872 3~1.066 3)
        葡萄牙Portugal 0.980 6(0.958 1~1.003 7) 1.009 5(0.952 6~1.069 9) 0.942 8(0.860 0~1.033 5)
        英国Britain 1.001 9(0.974 4~1.030 1) 0.972 3(0.915 8~1.032 3) 0.986 2(0.898 1~1.083 0)
    合并Pooled 1.008 5(0.990 1~1.027 2) 1.022 5(0.983 7~1.062 8) 0.964 9(0.896 1~1.039 0)
    CD
        保加利亚Bulgaria 1.002 7(0.942 8~1.066 3) 0.974 7(0.912 5~1.041 1)
        克罗地亚Croatia 1.001 9(0.940 0~1.068 0) 1.013 3(0.938 4~1.094 1) 1.160 2(0.255 8~5.263 0)
        匈牙利Hungary 0.986 4(0.915 1~1.063 2) 0.997 2(0.918 3~1.082 8) 11.687 5(1.852 3~73.747 1)
        日本Japan 1.136 4(1.052 5~1.227 0) 1.104 8(1.016 0~1.201 5) 27.288 0(4.525 8~164.532 8)
        塞尔维亚Serbia 1.018 2(0.950 0~1.091 4) 1.020 5(0.950 2~1.095 9) 1.135 5(0.252 5~5.105 8)
        斯洛文尼亚Slovenia 1.049 8(0.986 9~1.116 8) 0.822 2(0.197 7~3.419 5)
        瑞士Switzerland 0.988 6(0.908 0~1.076 4)
    合并Pooled 1.027 7(0.970 7~1.088 1) 1.020 5(0.963 4~1.080 9) 3.218 7(0.815 1~12.710 7)
    D
        奥地利Austria 0.987 8(0.946 8~1.030 6) 0.962 9(0.866 4~1.070 2) 0.984 3(0.486 5~1.991 6)
        加拿大Canada 1.010 4(0.970 7~1.051 8) 1.022 1(0.960 8~1.087 3) 1.088 1(0.777 3~1.523 0)
        捷克Czech Republic 1.009 1(0.967 7~1.052 3) 1.008 8(0.914 6~1.112 6) 0.756 0(0.377 5~1.514 2)
        芬兰Finland 1.003 5(0.951 2~1.058 6) 0.950 0(0.828 9~1.088 7) 0.862 9(0.423 1~1.760 1)
        立陶宛Lithuania 0.995 9(0.954 0~1.039 6) 0.963 7(0.872 4~1.064 6) 0.852 3(0.493 6~1.471 8)
        挪威Norway 1.016 3(0.981 8~1.052 1) 1.005 3(0.944 6~1.070 0)
        波兰Poland 0.954 9(0.920 6~0.990 5) 0.868 4(0.810 3~0.930 6) 0.527 9(0.313 1~0.889 8)
        韩国Republic of Korea 0.981 2(0.945 9~1.017 9) 0.949 7(0.882 4~1.022 0) 0.518 5(0.308 4~0.871 9)
        罗马尼亚Romania 0.991 7(0.885 2~1.111 0) 0.974 6(0.526 1~1.805 6)
        俄罗斯Russia 1.015 5(0.972 8~1.060 0) 0.992 0(0.910 5~1.080 7) 0.772 2(0.439 1~1.357 7)
        斯洛伐克Slovakia 1.009 9(0.964 4~1.057 5) 0.977 0(0.886 3~1.077 0) 1.040 1(0.600 2~1.802 2)
        瑞典Sweden 1.023 8(0.989 8~1.059 0) 1.116 9(1.032 6~1.208 0)
    合并Pooled 1.000 6(0.979 3~1.022 3) 0.982 5(0.935 9~1.031 4) 0.813 9(0.594 5~1.114 3)
    国家/地区
    Country/regions
    RR值value (95% CI)
    NO2 AQI CO AQI O3 AQI
    A
        巴西Brazil 1.079 1(0.971 9~1.198 1) 1.024 8(0.863 9~1.215 7) 0.934 6(0.879 6~0.993 0)
        哥伦比亚Colombia 1.079 1(0.971 9~1.198 1) 1.024 8(0.863 9~1.215 7) 0.934 6(0.879 6~0.993 0)
        萨尔瓦多El Salvador
        菲律宾Philippines 1.079 1(0.971 9~1.198 1) 0.934 6(0.879 6~0.993 0)
        新加坡Singapore 1.079 1(0.971 9~1.198 1) 1.024 8(0.863 9~1.215 7) 0.934 6(0.879 6~0.993 0)
        泰国Thailand 1.079 1(0.971 9~1.198 1) 0.934 6(0.879 6~0.993 0)
    合并Pooled 1.079 1(0.971 9~1.198 1) 1.024 8(0.863 9~1.215 7) 0.934 6(0.879 6~0.993 0)
    AB
        玻利维亚Bolivia 0.936 7(0.742 9~1.181 0) 1.043 2(0.966 3~1.126 3)
    ABC
        厄尔瓜多Ecuador 0.812 9(0.401 0~1.647 9) 1.094 7(0.931 0~1.287 3)
        印度India 0.964 3(0.866 5~1.073 2) 1.164 2(0.698 1~1.941 6) 0.984 5(0.863 5~1.122 5)
        秘鲁Peru 0.964 3(0.866 5~1.073 2) 0.587 7(0.313 8~1.100 5) 1.127 0(0.948 7~1.338 7)
    合并Pooled 0.964 3(0.866 5~1.073 2) 0.822 4(0.508 0~1.331 3) 1.067 0(0.946 1~1.203 3)
    AC
        越南Vietnam 1.052 2(0.905 2~1.223 1) 1.014 6(0.987 9~1.042 0)
        澳大利亚Australia 0.987 1(0.927 8~1.050 1) 0.970 1(0.906 4~1.038 2) 1.016 2(0.973 2~1.061 1)
        科威特Kuwait
        墨西哥Mexico 0.987 1(0.927 8~1.050 1) 0.970 1(0.906 4~1.038 2) 1.016 2(0.973 2~1.061 1)
    合并Pooled 0.987 1(0.927 8~1.050 1) 0.970 1(0.906 4~1.038 2) 1.016 2(0.973 2~1.061 1)
    BC
        以色列Israel 1.288 7(0.983 7~1.688 2) 0.836 9(0.608 7~1.150 7) 0.966 7(0.806 1~1.159 4)
    BCD
        智利Chile 1.042 0(0.909 7~1.193 6) 0.967 3(0.838 0~1.116 4) 0.930 9(0.856 0~1.012 2)
        中国大陆Chinese mainland 1.047 4(0.919 2~1.193 4) 0.888 7(0.781 0~1.011 3) 0.907 0(0.838 0~0.981 6)
        土耳其Türkiye 1.128 9(0.976 7~1.304 7) 1.020 6(0.890 0~1.170 4)
        美国America 0.928 7(0.853 2~1.010 9)
    合并Pooled 1.072 0(0.965 4~1.190 4) 0.957 3(0.861 8~1.063 5) 0.922 1(0.861 4~0.987 1)
    C
        比利时Belgium 1.023 7(0.938 8~1.116 2) 0.882 1(0.826 0~0.942 0)
        丹麦Denmark 1.062 7(0.976 8~1.156 2) 2.025 5(1.068 2~3.840 6) 0.878 8(0.823 3~0.938 1)
        法国France 1.045 3(0.965 7~1.131 5) 0.887 1(0.833 0~0.944 7)
        德国Germany 0.990 9(0.913 4~1.074 9) 0.871 5(0.816 1~0.930 5)
        意大利Italy 1.016 6(0.941 0~1.098 3) 0.880 5(0.825 1~0.939 6)
        卢森堡Luxembourg 0.878 4(0.822 1~0.938 6)
        马耳他Malta 1.032 3(0.942 5~1.130 6) 0.869 6(0.813 9~0.929 1)
        荷兰Netherlands 0.982 1(0.909 8~1.060 2) 2.025 5(1.068 2~3.840 6) 0.880 7(0.825 5~0.939 5)
        葡萄牙Portugal 1.037 5(0.953 3~1.129 2) 0.870 4(0.815 4~0.929 1)
        英国Britain 1.028 2(0.952 5~1.109 8) 0.889 1(0.834 3~0.947 5)
    合并Pooled 1.024 1(0.960 0~1.092 4) 2.025 5(1.068 2~3.840 6) 0.878 8(0.835 7~0.924 1)
    CD
        保加利亚Bulgaria 0.886 8(0.508 6~1.546 2) 0.669 8(0.486 6~0.921 9)
        克罗地亚Croatia 0.768 6(0.396 8~1.488 9) 0.856 4(0.614 0~1.194 5)
        匈牙利Hungary 0.739 9(0.310 7~1.762 4) 0.179 2(0.007 5~4.282 2) 1.176 3(0.794 2~1.742 1)
        日本Japan 4.001 3(2.189 4~7.312 6) 41.846 7(2.171 0~806.614 1) 0.952 2(0.727 8~1.245 9)
        塞尔维亚Serbia 2.505 0(1.323 4~4.741 7) 1.300 7(0.083 7~20.220 7) 1.256 7(0.893 2~1.768 1)
        斯洛文尼亚Slovenia 1.091 1(0.630 4~1.888 6) 0.911 8(0.717 8~1.158 2)
        瑞士Switzerland 0.698 2(0.358 5~1.359 9) 1.084 5(0.777 5~1.512 8)
    合并Pooled 1.212 4(0.719 9~2.042 0) 2.136 6(0.139 3~32.775 5) 0.968 3(0.786 9~1.191 6)
    D
        奥地利Austria 1.073 8(0.875 0~1.317 8)
        加拿大Canada 1.083 5(0.920 9~1.274 9) 1.704 8(0.796 1~3.650 7) 1.010 1(0.887 4~1.149 8)
        捷克Czech Republic 1.053 6(0.851 2~1.304 1) 0.867 4(0.744 6~1.010 4)
        芬兰Finland 0.994 3(0.795 8~1.242 3) 0.937 1(0.803 6~1.092 8)
        立陶宛Lithuania 0.916 2(0.803 3~1.045 0)
        挪威Norway 1.058 2(0.935 6~1.196 8) 0.885 0(0.807 0~0.970 5)
        波兰Poland 0.945 2(0.778 0~1.148 2) 0.694 2(0.300 7~1.602 4) 0.965 8(0.839 8~1.110 8)
        韩国Republic of Korea 0.859 2(0.735 4~1.003 9) 0.536 4(0.216 1~1.331 4) 0.964 2(0.848 2~1.096 0)
        罗马尼亚Romania 0.987 6(0.810 3~1.203 8) 0.904 1(0.792 5~1.031 5)
        俄罗斯Russia 1.081 7(0.917 1~1.275 8) 1.925 0(0.792 7~4.674 8) 0.934 5(0.838 7~1.041 3)
        斯洛伐克Slovakia 1.047 3(0.845 8~1.296 7) 3.032 8(0.948 9~9.693 6)
        瑞典Sweden 1.026 6(0.874 0~1.205 8) 0.840 2(0.751 2~0.939 7)
    合并Pooled 1.016 9(0.922 9~1.120 5) 1.299 5(0.644 6~2.619 6) 0.921 2(0.858 1~0.988 9)
    注:PM2.5, 细颗粒物; PM10, 可吸入颗粒物; SO2, 二氧化硫; NO2, 二氧化氮;CO, 一氧化碳; O3, 臭氧; AQI,空气质量指数; A,热带;B,干旱带;C,温带;D,寒带; “–”表示数据无法获取。
    P<0.05。
    Note: PM2.5, fine particles; PM10, inhalable particles; SO2, sulfur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone; AQI, air quality index; A, tropical; B, arid zone; C, temperate zone; D, cold zone; "–" indicates that the data cannot be obtained.
    P<0.05.
    下载: 导出CSV
  • [1] Uyeki TM, Hui DS, Zambon M, et al. Influenza[J]. Lancet, 2022, 400(10353): 693-706. DOI: 10.1016/S0140-6736(22)00982-5.
    [2] World Health Organization. Influenza (seasonal)[EB/OL]. (2025-02-28)[2025-03-24]. https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal).
    [3] Liang YL, Sun ZB, Hua W, et al. Spatiotemporal effects of meteorological conditions on global influenza peaks[J]. Environ Res, 2023, 231(Pt 2): 116171. DOI: 10.1016/j.envres.2023.116171.
    [4] Neumann G, Kawaoka Y. Seasonality of influenza and other respiratory viruses[J]. EMBO Mol Med, 2022, 14(4): e15352. DOI: 10.15252/emmm.202115352.
    [5] Hamidou Soumana I, Carlsten C. Air pollution and the respiratory microbiome[J]. J Allergy Clin Immunol, 2021, 148(1): 67-69. DOI: 10.1016/j.jaci.2021.05.013.
    [6] Yang J, Yang Z, Qi L, et al. Influence of air pollution on influenza-like illness in China: a nationwide time-series analysis[J]. EBioMedicine, 2023, 87: 104421. DOI: 10.1016/j.ebiom.2022.104421.
    [7] Glencross DA, Ho TR, Camiña N, et al. Air pollution and its effects on the immune system[J]. Free Radic Biol Med, 2020, 151: 56-68. DOI: 10.1016/j.freeradbiomed.2020.01.179.
    [8] Wikimedia Foundation. Air quality index[EB/OL]. (2024-10-10)[2024-10-20]. https://en.wikipedia.org/w/index.phptitle=Air_quality_index&oldid=1250463831.
    [9] Yu LJ, Li XL, Wang YH, et al. Short-term exposure to ambient air pollution and influenza: a multicity study in China[J]. Environ Health Perspect, 2023, 131(12): 127010. DOI: 10.1289/EHP12146.
    [10] Luo CY, Qian J, Liu YQ, et al. Long-term air pollution levels modify the relationships between short-term exposure to meteorological factors, air pollution and the incidence of hand, foot and mouth disease in children: a DLNM-based multicity time series study in Sichuan Province, China[J]. BMC Public Health, 2022, 22(1): 1484. DOI: 10.1186/s12889-022-13890-7.
    [11] Sera F, Gasparrini A. Extended two-stage designs for environmental research[J]. Environ Health, 2022, 21(1): 41. DOI: 10.1186/s12940-022-00853-z.
    [12] Qiu JQ, Wang HM, Hu L, et al. Spatial transmission network construction of influenza-like illness using dynamic Bayesian network and vector-autoregressive moving average model[J]. BMC Infect Dis, 2021, 21(1): 164. DOI: 10.1186/s12879-021-05769-6.
    [13] Shimmei K, Nakamura T, Ng CFS, et al. Association between seasonal influenza and absolute humidity: time-series analysis with daily surveillance data in Japan[J]. Sci Rep, 2020, 10(1): 7764. DOI: 10.1038/s41598-020-63712-2.
    [14] Ma P, Zhou N, Wang XZ, et al. Stronger susceptibilities to air pollutants of influenza A than B were identified in subtropical Shenzhen, China[J]. Environ Res, 2023, 219: 115100. DOI: 10.1016/j.envres.2022.115100.
    [15] Beck HE, McVicar TR, Vergopolan N, et al. High-resolution (1 km) Köppen-Geiger maps for 1901-2099 based on constrained CMIP6 projections[J]. Sci Data, 2023, 10(1): 724. DOI: 10.1038/s41597-023-02549-6.
    [16] 王小磊, 黄超洋, 孙倩莱, 等. 湖南省2014–2023年流行性感冒哨点监测数据分析[J]. 中国感染控制杂志, 2024, 23(11): 1413-1420. DOI: 10.12138/j.issn.1671-9638.20246535.

    Wang XL, Huang CY, Sun QL, et al. Analysis of influenza sentinel surveillance data in Hunan Province, 2014-2023[J]. Chin J Infect Control, 2024, 23(11): 1413-1420. DOI: 10.12138/j.issn.1671-9638.20246535.
    [17] Zhou LL, Yang HP, Pan W, et al. Association between meteorological factors and the epidemics of influenza (sub)types in a subtropical basin of Southwest China[J]. Epidemics, 2022, 41: 100650. DOI: 10.1016/j.epidem.2022.100650.
    [18] Guo F, Zhang P, Do V, et al. Ozone as an environmental driver of influenza[J]. Nat Commun, 2024, 15(1): 3763. DOI: 10.1038/s41467-024-48199-z.
    [19] Wang YB, Zhang R, Yang FY, et al. Potential mechanisms mediating PM2.5-induced alterations of H3N2 influenza virus infection and cytokine production in human bronchial epithelial cells[J]. Ecotoxicol Environ Saf, 2023, 259: 115069. DOI: 10.1016/j.ecoenv.2023.115069.
    [20] Yang J, Zhang T, Yang LY, et al. Association between ozone and influenza transmissibility in China[J]. BMC Infect Dis, 2023, 23(1): 763. DOI: 10.1186/s12879-023-08769-w.
    [21] Horn SA, Dasgupta PK. The Air Quality Index (AQI) in historical and analytical perspective a tutorial review[J]. Talanta, 2024, 267: 125260. DOI: 10.1016/j.talanta.2023.125260.
    [22] Wang SY, Ren Y, Xia BS. Estimation of urban AQI based on interpretable machine learning[J]. Environ Sci Pollut Res Int, 2023, 30(42): 96562-96574. DOI: 10.1007/s11356-023-29336-5.
    [23] 段肖肖, 刘思秀. PM2.5致病机制的研究进展[J]. 复旦学报(医学版), 2020, 47(4): 605-614. DOI: 10.3969/j.issn.1672-8467.2020.04.023.

    Duan XX, Liu SX. Research progress on pathogenic mechanism of PM2.5 [J]. Fudan Univ J Med Sci, 2020, 47(4): 605-614. DOI: 10.3969/j.issn.1672-8467.2020.04.023.
    [24] Wang ZF, Fu HX, Bian M, et al. Variation characteristics of ozone concentration and analysis of meteorological influencing factors in Jinan City, 2019-2022[J]. China Environmental Monitoring, 2025: 1-13.
    [25] Choudhary I, Vo T, Paudel K, et al. Postnatal ozone exposure disrupts alveolar development, exaggerates mucoinflammatory responses, and suppresses bacterial clearance in developing Scnn1b-tg+ mice lungs[J]. J Immunol, 2021, 207(4): 1165-1179. DOI: 10.4049/jimmunol.2001286.
    [26] Caldera F, Mercer M, Samson SI, et al. Influenza vaccination in immunocompromised populations: strategies to improve immunogenicity[J]. Vaccine, 2021, 39(Suppl 1): A15-A23. DOI: 10.1016/j.vaccine.2020.11.037.
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-17
  • 修回日期:  2025-03-27
  • 网络出版日期:  2025-10-10
  • 刊出日期:  2025-09-10

目录

    /

    返回文章
    返回