• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石家庄市日均气温与居民非意外死亡风险和负担的相关性

李梦娜 陈思源 康慧 沈强 暴磊 马金沙 纪逸 陈凤格

李梦娜, 陈思源, 康慧, 沈强, 暴磊, 马金沙, 纪逸, 陈凤格. 石家庄市日均气温与居民非意外死亡风险和负担的相关性[J]. 中华疾病控制杂志, 2025, 29(9): 1024-1030. doi: 10.16462/j.cnki.zhjbkz.2025.09.004
引用本文: 李梦娜, 陈思源, 康慧, 沈强, 暴磊, 马金沙, 纪逸, 陈凤格. 石家庄市日均气温与居民非意外死亡风险和负担的相关性[J]. 中华疾病控制杂志, 2025, 29(9): 1024-1030. doi: 10.16462/j.cnki.zhjbkz.2025.09.004
LI Mengna, CHEN Siyuan, KANG Hui, SHEN Qiang, BAO Lei, MA Jinsha, JI Yi, CHEN Fengge. Study on the correlation between daily average temperature and the risk and burden of non-accidental deaths among residents in Shijiazhuang City[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(9): 1024-1030. doi: 10.16462/j.cnki.zhjbkz.2025.09.004
Citation: LI Mengna, CHEN Siyuan, KANG Hui, SHEN Qiang, BAO Lei, MA Jinsha, JI Yi, CHEN Fengge. Study on the correlation between daily average temperature and the risk and burden of non-accidental deaths among residents in Shijiazhuang City[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(9): 1024-1030. doi: 10.16462/j.cnki.zhjbkz.2025.09.004

石家庄市日均气温与居民非意外死亡风险和负担的相关性

doi: 10.16462/j.cnki.zhjbkz.2025.09.004
基金项目: 

河北省医学科学研究课题 20251134

详细信息
    通讯作者:

    陈凤格,E-mail: chenfengge319@163.com

  • 中图分类号: R122

Study on the correlation between daily average temperature and the risk and burden of non-accidental deaths among residents in Shijiazhuang City

Funds: 

Medical Science Research Project of Hebei 20251134

More Information
  • 摘要:   目的   分析石家庄市日均气温对居民非意外死亡风险的影响,为制定针对性公共卫生防护策略提供科学依据。   方法   运用分布滞后非线性模型(distributed lag nonlinear model, DLNM)对2019―2023年石家庄市每日死亡人数和气象数据进行拟合,分析日均气温对非意外、循环系统疾病和呼吸系统疾病死亡影响的滞后效应和累积滞后效应。   结果   2019―2023年石家庄市日均气温与非意外、循环系统疾病和呼吸系统疾病死亡率呈现非线性关联。非意外死亡和循环系统疾病死亡风险最低的气温阈值为12.0 ℃。非意外死亡(RR=2.144, 95% CI: 1.625~2.829)和循环系统疾病死亡(RR=2.083, 95% CI: 1.448~2.998)的累积低温影响在lag 0~21 d时达峰值,非意外死亡的高温累积影响(RR=1.282, 95% CI: 1.150~1.429)在lag 0~3 d时达到峰值,循环系统疾病死亡的高温累积影响在lag 0~4 d时达到最大值(RR=1.416, 95% CI: 1.210~1.658)。呼吸系统疾病死亡风险在累积低温和累积高温作用下差异均无统计学意义(均P>0.05)。冷、热效应对男、女的死亡风险均产生影响,与<65岁人群相比,≥65岁人群对冷、热效应更为敏感。   结论   石家庄市居民的非意外、循环系统疾病和呼吸系统疾病死亡率均受到极端气温影响,并存在累积效应,≥65岁人群死亡风险高于<65岁人群死亡风险。
  • 图  1  死因数据收集与整理的流程图

    Figure  1.  Flowchart for the collection and collation of cause of death data

    图  2  2019―2023年石家庄市日均气温对疾病死亡的单日滞后效应

    A:非意外死亡;B:循环系统疾病死亡;C:呼吸系统疾病死亡。

    Figure  2.  One-day lagged effect of daily mean temperature on disease mortality in Shijiazhuang City, 2019-2023

    A: non-accidental death; B: death from circulatory system diseases; C: death from respiratory system diseases.

    图  3  石家庄市日均气温与居民非意外死亡、循环系统疾病死亡和呼吸系统疾病死亡的效应曲线分析

    A:非意外死亡;B:循环系统疾病死亡;C:呼吸系统疾病死亡。

    Figure  3.  Analysis of the effect curves of the daily mean temperature in Shijiazhuang City on residents' non-accidental deaths, deaths from cardiovascular diseases, and deaths from respiratory diseases

    A: non-accidental death; B: death from circulatory system diseases; C: death from respiratory system diseases.

    图  4  极端高低温对非意外死亡影响的滞后效应图

    A~C:依次表示低温对非意外、循环系统疾病和呼吸系统疾病死亡的单日滞后效应;D~F:依次表示高温对非意外、循环系统疾病和呼吸系统疾病死亡的单日滞后效应。

    Figure  4.  Plot of lagged effects of extreme high and low temperatures on non-accidental deaths

    A-C: The single-day lag effect of low temperature on non-accidental, circulatory and respiratory deaths; D-F: Represents the single-day lag effect of high temperature on non-accidental, circulatory and respiratory deaths.

    表  1  2019―2023年石家庄市居民日均非意外死亡情况

    Table  1.   Daily non-accidental deaths of residents in Shijiazhuang from 2019 to 2023

    变量Variable 例数Number of cases 最小值Min P25 中位数Median P75 最大值Max
    非意外死亡 Non accidental death 40.67±19.04 17 32 38 44 232
    <65岁 years old 8.44±4.73 0 6 8 10 56
    ≥65岁 years old 32.23±15.64 13 25 30 35 182
    男 Male 23.15±11.43 6 18 22 26 145
    女 Female 17.51±8.70 5 13 16 18 98
    循环系统疾病死亡 Death from circulatory system diseases 22.76±11.24 7 17 21 25 130
    呼吸系统疾病死亡 Death from respiratory system diseases 5.40±4.61 1 3 5 7 54
    注:①以x±s表示。
    Note: ① x±s.
    下载: 导出CSV

    表  2  气温对非意外、循环系统疾病和呼吸系统疾病死亡的累积冷效应和热效应

    Table  2.   Temperature's cumulative cold and heat influences on deaths caused by non-accidental factors, circulatory diseases, and respiratory diseases

    滞后效应期
    Lag effect period
    非意外死亡
    Non accidental death
    循环系统疾病死亡
    Death from circulatory system diseases
    呼吸系统疾病死亡
    Death from respiratory system diseases
    冷效应 Cold effect
    (-4.0 ℃)
    热效应 Heat effect
    (31.0 ℃)
    冷效应 Cold effect
    (-4.0 ℃)
    热效应 Heat effect
    (31.0 ℃)
    冷效应 Cold effect
    (-4.0 ℃)
    热效应 Heat effect
    (31.0 ℃)
    Lag 0 d 0.956(0.896~1.019) 1.129(1.047~1.218) 0.923(0.848~1.004) 1.153(1.044~1.274) 0.849(0.556~1.297) 0.888(0.677~1.164)
    Lag 0~1 d 0.939(0.872~1.012) 1.218(1.110~1.336) 0.911(0.826~1.005) 1.279(1.133~1.444) 0.766(0.454~1.293) 0.874(0.621~1.230)
    Lag 0~2 d 0.948(0.878~1.023) 1.266(1.148~1.395) 0.936(0.846~1.035) 1.365(1.201~1.552) 0.715(0.403~1.267) 0.886(0.603~1.302)
    Lag 0~3 d 0.976(0.896~1.063) 1.282(1.150~1.429) 0.977(0.874~1.094) 1.408(1.221~1.623) 0.679(0.355~1.299) 0.878(0.564~1.366)
    Lag 0~4 d 1.020(0.928~1.122) 1.277(1.132~1.441) 1.028(0.907~1.164) 1.416(1.210~1.658) 0.657(0.319~1.354) 0.852(0.520~1.395)
    Lag 0~5 d 1.074(0.968~1.192) 1.260(1.103~1.439) 1.083(0.944~1.242) 1.404(1.179~1.671) 0.652(0.294~1.449) 0.823(0.477~1.417)
    Lag 0~6 d 1.133(1.010~1.271) 1.238(1.069~1.434) 1.140(0.979~1.326) 1.381(1.139~1.675) 0.667(0.276~1.612) 0.803(0.440~1.464)
    Lag 0~7 d 1.193(1.051~1.355) 1.217(1.035~1.431) 1.196(1.012~1.414) 1.358(1.097~1.680) 0.706(0.267~1.865) 0.800(0.412~1.551)
    Lag 0~8 d 1.250(1.087~1.437) 1.200(1.005~1.433) 1.250(1.040~1.502) 1.339(1.061~1.690) 0.771(0.266~2.231) 0.817(0.395~1.688)
    Lag 0~9 d 1.302(1.120~1.514) 1.190(0.983~1.440) 1.300(1.066~1.586) 1.329(1.034~1.707) 0.869(0.275~2.742) 0.858(0.390~1.887)
    Lag 0~10 d 1.350(1.148~1.587) 1.185(0.967~1.453) 1.347(1.088~1.667) 1.325(1.015~1.731) 1.006(0.293~3.451) 0.923(0.394~2.160)
    Lag 0~11 d 1.394(1.174~1.656) 1.186(0.956~1.471) 1.391(1.109~1.746) 1.328(1.001~1.763) 1.188(0.318~4.434) 1.010(0.405~2.520)
    Lag 0~12 d 1.438(1.198~1.725) 1.190(0.948~1.494) 1.435(1.129~1.825) 1.336(0.991~1.800) 1.423(0.349~5.799) 1.117(0.419~2.981)
    Lag 0~13 d 1.482(1.222~1.798) 1.197(0.943~1.520) 1.480(1.148~1.909) 1.345(0.983~1.842) 1.720(0.385~7.683) 1.242(0.434~3.555)
    Lag 0~14 d 1.530(1.248~1.875) 1.206(0.938~1.550) 1.528(1.169~1.998) 1.356(0.975~1.886) 2.088(0.425~10.255) 1.380(0.448~4.250)
    Lag 0~15 d 1.583(1.277~1.961) 1.216(0.935~1.580) 1.581(1.192~2.096) 1.366(0.968~1.929) 2.533(0.468~13.711) 1.525(0.460~5.062)
    Lag 0~16 d 1.644(1.313~2.058) 1.225(0.932~1.610) 1.639(1.219~2.203) 1.375(0.960~1.970) 3.063(0.514~18.266) 1.671(0.467~5.980)
    Lag 0~17 d 1.714(1.355~2.168) 1.235(0.930~1.639) 1.705(1.252~2.322) 1.381(0.951~2.007) 3.677(0.560~24.156) 1.809(0.469~6.978)
    Lag 0~18 d 1.797(1.407~2.295) 1.243(0.927~1.666) 1.781(1.291~2.456) 1.384(0.940~2.037) 4.375(0.605~31.649) 1.928(0.463~8.027)
    Lag 0~19 d 1.894(1.469~2.443) 1.249(0.923~1.691) 1.868(1.337~2.609) 1.382(0.927~2.062) 5.148(0.645~41.098) 2.021(0.449~9.098)
    Lag 0~20 d 2.009(1.541~2.619) 1.254(0.917~1.715) 1.968(1.389~2.788) 1.376(0.910~2.082) 5.983(0.675~53.031) 2.080(0.425~10.173)
    Lag 0~21 d 2.144(1.625~2.829) 1.257(0.909~1.740) 2.083(1.448~2.998) 1.366(0.889~2.099) 6.866(0.690~68.317) 2.101(0.392~11.252)
    注:①以RR值(95% CI)表示; ② P<0.05。
    Note: ① RR value(95% CI); ② P<0.05.
    下载: 导出CSV

    表  3  日均气温对不同性别和年龄人群非意外死亡的累积效应

    Table  3.   Cumulative effect of daily average temperature on non-accidental deaths in different gender and age groups

    组别 Group 累积冷效应Cumulative cold effect
    (-4.0 ℃,lag 0~21 d)
    累积热效应Cumulative thermal effect
    (31.0 ℃,lag 0~3 d)
    RR值value (95% CI) P值value RR值value (95% CI) P值value
    性别Gender
      男Male 2.217(1.548~3.176) < 0.001 1.331(1.154~1.534) < 0.001
      女Female 2.038(1.372~3.029) < 0.001 1.222(1.049~1.425) 0.010
    年龄/岁Age/years
       < 65 2.046(1.192~3.512) 0.009 1.100(0.884~1.369) 0.394
      ≥65 2.113(1.563~2.855) < 0.001 1.335(1.186~1.502) < 0.001
    下载: 导出CSV
  • [1] IPCC. Climate change 2023: synthesis report[EB/OL]. (2023-03-20)[2024-12-03]. https://www.ipcc.ch/report/sixth-assessment-report-cycle/.
    [2] Wan K, Feng ZQ, Hajat S, et al. Temperature-related mortality and associated vulnerabilities: evidence from Scotland using extended time-series datasets[J]. Environ Health, 2022, 21(1): 99. DOI: 10.1186/s12940-022-00912-5.
    [3] 肖瑶. 深圳市温度变化对非意外死亡的短期效应研究[D]. 武汉: 华中科技大学, 2022.

    Xiao Y. Short-term effects of temperature change on non-accidental mortality in Shenzhen[D]. Wuhan: Huazhong University of Science and Technology, 2022.
    [4] Yang X, Wang JS, Zhang GM, et al. Spatiotemporal distribution and lag effect of extreme temperature exposure on mortality of residents in Jiangsu, China[J]. Heliyon, 2024, 10(9): e30538. DOI: 10.1016/j.heliyon.2024.e30538.
    [5] 魏娜娜, 杨升美, 张向楠, 等. 内蒙古自治区5个典型城市可吸入颗粒物暴露对居民每日死亡的影响[J]. 中华疾病控制杂志, 2024, 28(7): 791-797. DOI: 10.16462/j.cnki.zhjbkz.2024.07.008.

    Wei NN, Yang SM, Zhang XN, et al. The impact of inhalable particulate matter exposure on daily mortality among residents in five typical cities in Inner Mongolia[J]. Chin J Dis Control Prev, 2024, 28(7): 791-797. DOI: 10.16462/j.cnki.zhjbkz.2024.07.008.
    [6] 陈敏, 孟显峰, 金丽君, 等. 潍坊市环境温度对人群非意外死亡风险的影响[J]. 环境与健康杂志, 2024, 41(8): 706-709. DOI: 10.16241/j.cnki.1001-5914.2024.08.010.

    Chen M, Meng XF, Jin LJ, et al. Impact of environmental temperature on risk of non accidental deaths of the crowd in Weifang City[J]. J Environ Health, 2024, 41(8): 706-709. DOI: 10.16241/j.cnki.1001-5914.2024.08.010.
    [7] 孟群, 刘爱民. 国家疾病分类与代码(ICD-10)应用指导手册[M]. 北京: 中国协和医科大学出版社, 2017: 45-48.

    Meng Q, Liu AM. Guidance manual for the application of national disease classification and codes (ICD-10)[M]. Beijing: Peking Union Medical College Press, 2017: 45-48.
    [8] Green H, Bailey J, Schwarz L, et al. Impact of heat on mortality and morbidity in low and middle income countries: a review of the epidemiological evidence and considerations for future research[J]. Environ Res, 2019, 171: 80-91. DOI: 10.1016/j.envres.2019.01.010.
    [9] 韩志伟, 王永星, 张杰, 等. 2013―2020年郑州市气温对居民非意外死亡的影响归因风险评估[J]. 河南预防医学杂志, 2022, 33(4): 241-244, 263. DOI: 10.13515/j.cnki.hnjpm.1006-8414.2022.04.009.

    Han ZW, Wang YX, Zhang J, et al. Attribution risk assessment of air temperature impact on non-accidental death of residents in Zhengzhou, 2013-2020[J]. Henan J Prev Med, 2022, 33(4): 241-244, 263. DOI: 10.13515/j.cnki.hnjpm.1006-8414.2022.04.009.
    [10] 唐静, 肖长春, 张俊青, 等. 合肥市2007―2016年日平均温度与居民非意外死亡人数的关系[J]. 中华疾病控制杂志, 2018, 22(4): 422-425. DOI: 10.16462/j.cnki.zhjbkz.2018.04.023.

    Tang J, Xiao CC, Zhang JQ, et al. The relationship between daily average temperature and non-accidental mortality in Hefei City from 2007 to 2016[J]. Chin J Dis Control Prev, 2018, 22(4): 422-425. DOI: 10.16462/j.cnki.zhjbkz.2018.04.023.
    [11] Gao S, Yang T, Zhang XH, et al. A longitudinal study on the effect of extreme temperature on non-accidental deaths in Hulunbuir City based on DLNM model[J]. Int Arch Occup Environ Health, 2023, 96(7): 1009-1014. DOI: 10.1007/s00420-023-01986-5.
    [12] 陈文倩. 极端气温对深圳市居民非意外死亡风险的影响[D]. 武汉: 华中科技大学, 2022.

    Chen WQ. The effect of extreme temperature on health risk of non-accidental death in Shenzhen[D]. Wuhan: Huazhong University of Science and Technology, 2022.
    [13] Chen X, Su M, Yuan M, et al. Association between ambient temperature and non-accidental mortality in Guiyang, China: a time-series analysis (2013-2023)[J]. PLoS One, 2025, 20(4): e0319863. DOI: 10.1371/journal.pone.0319863.
    [14] Chen RJ, Yin P, Wang LJ, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities[J]. BMJ, 2018, 363: k4306. DOI: 10.1136/bmj.k4306.
    [15] 陈宇, 施泉清, 张春霞, 等. 基于分布滞后非线性模型评估镇江市日均气温对居民死亡风险的影响[J]. 环境卫生学杂志, 2023, 13(6): 433-438, 464. DOI: 10.13421/j.cnki.hjwsxzz.2023.06.005.

    Chen Y, Shi QQ, Zhang CX, et al. Influence of daily average temperature on the risk of resident mortality in Zhenjiang, China: an assessment based on a distributed lag nonlinear model[J]. Journal of Environm ental Hygien, 2023, 13(6): 433-438, 464. DOI: 10.13421/j.cnki.hjwsxzz.2023.06.005.
    [16] 刘佳, 钱云, 周伟杰, 等. 无锡市气温对非意外死亡及寿命损失年影响的时间序列分析[J]. 中华疾病控制杂志, 2019, 23(6): 673-678. DOI: 10.16462/j.cnki.zhjbkz.2019.06.011.

    Liu J, Qian Y, Zhou WJ, et al. Lagged effect of temperature on non-accidental mortality and years of life lost in Wuxi: a time-series study[J]. Chin J Dis Control Prev, 2019, 23(6): 673-678. DOI: 10.16462/j.cnki.zhjbkz.2019.06.011.
    [17] Yuan L, Madaniyazi L, Vicedo-Cabrera AM, et al. A nationwide comparative analysis of temperature-related mortality and morbidity in Japan[J]. Environ Health Perspect, 2023, 131(12): 127008. DOI: 10.1289/EHP12854.
    [18] Huang CR, Barnett AG, Wang XM, et al. Effects of extreme temperatures on years of life lost for cardiovascular deaths: a time series study in Brisbane, Australia[J]. Circ Cardiovasc Qual Outcomes, 2012, 5(5): 609-614. DOI: 10.1161/CIRCOUTCOMES.112.965707.
    [19] Guo YM, Punnasiri K, Tong SL. Effects of temperature on mortality in Chiang Mai City, Thailand: a time series study[J]. Environ Health, 2012, 11: 36. DOI: 10.1186/1476-069X-11-36.
    [20] Kwon BY, Lee E, Lee SJ, et al. Vulnerabilities to temperature effects on acute myocardial infarction hospital admissions in south Korea[J]. Int J Environ Res Public Health, 2015, 12(11): 14571-14588. DOI: 10.3390/ijerph121114571.
    [21] Yu DZ, Lee SB, Chen S, et al. Coupling the effects of extreme temperature and air pollution on non-accidental mortality in Rencheng, China[J]. Front Public Health, 2023, 11: 1241385. DOI: 10.3389/fpubh.2023.1241385.
    [22] Gao S, Yang T, Zhang XH, et al. A longitudinal study on the effect of extreme temperature on non-accidental deaths in Hulunbuir City based on DLNM model[J]. Int Arch Occup Environ Health, 2023, 96(7): 1009-1014. DOI: 10.1007/s00420-023-01986-5.
    [23] Gan H, Hou XQ, Zhu Z, et al. Smoking: a leading factor for the death of chronic respiratory diseases derived from global burden of disease study 2019[J]. BMC Pulm Med, 2022, 22(1): 149. DOI: 10.1186/s12890-022-01944-w.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-21
  • 修回日期:  2025-05-13
  • 网络出版日期:  2025-10-10
  • 刊出日期:  2025-09-10

目录

    /

    返回文章
    返回